×

Quasi-Newton minimization for the \(p(x)\)-Laplacian problem. (English) Zbl 1462.90152

Summary: We propose a quasi-Newton minimization approach for the solution of the \(p(x)\)-Laplacian elliptic problem, \(x \in \Omega \subset \mathbb{R}^m\). This method outperforms those existing for the \(p(x)\)-variable case, which are based on general purpose minimizers such as BFGS. Moreover, when compared to ad hoc techniques available in literature for the \(p\)-constant case, and usually referred to as “mesh independent”, the present method turns out to be generally superior thanks to better descent directions given by the quadratic model.

MSC:

90C53 Methods of quasi-Newton type
90C90 Applications of mathematical programming

Software:

KELLEY; FreeFem++
Full Text: DOI

References:

[1] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M., (Lebesgue and Sobolev Spaces with Variable Exponents. Lebesgue and Sobolev Spaces with Variable Exponents, Lect. Notes Math., vol. 2017 (2011), Springer) · Zbl 1222.46002
[2] Chen, Y.; Levine, S.; Rao, M., Variable exponent, linear growth functionals in image restoragion, SIAM J. Appl. Math., 66, 4, 1383-1406 (2006) · Zbl 1102.49010
[3] Harjulehto, P.; Hästö, P. P.; Lê, U. V.; Nuortio, M., Overview of differential equations with non-standard growth, Nonlinear Anal., 72, 4551-4574 (2010) · Zbl 1188.35072
[4] Rajagopal, K.; Růžička, M., On the modeling of electrorheological materials, Mech. Res. Commun., 23, 4, 401-407 (1996) · Zbl 0890.76007
[5] Růžička, M., (Electrorheological Fluids: Modeling and Mathematical Theory. Electrorheological Fluids: Modeling and Mathematical Theory, Lect. Notes Math., vol. 1748 (2000), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0968.76531
[6] Berselli, L. C.; Breit, D.; Diening, L., Convergence analysis for a finite element approximation of a steady model for electrorheological fluids, Numer. Math., 132, 657-689 (2016) · Zbl 1457.65180
[7] Barrett, J. W.; Prigozhin, L., Bean’s critical-state model as \(p \to \infty\) limit of an evolutionary \(p\)-Laplacian equation, Nonlinear Anal., 42, 977-993 (2000) · Zbl 1170.82436
[8] Bollt, E. M.; Chartrand, R.; Esedoglu, S.; Schultz, P.; Vixie, K. R., Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Adv. Comput. Math., 31, 61-85 (2009) · Zbl 1169.94302
[9] Bouchitte, G.; Buttazzo, G.; De Pascale, L., A \(p\)-Laplacian approximation for some mass optimization problems, J. Optim. Theory Appl., 118, 1-25 (2003) · Zbl 1040.49040
[10] Breit, D.; Diening, L.; Schwarzacher, S., Finite element approximation of the \(p(x)\)-Laplacian, SIAM J. Numer. Anal., 53, 1, 551-572 (2015) · Zbl 1312.65185
[11] Del Pezzo, L. M.; Martínez, S., Order of convergence of the finite element method for the \(p(x)\)-Laplacian, IMA J. Numer. Anal., 35, 4, 1864-1887 (2015) · Zbl 1334.65181
[12] Del Pezzo, L. M.; Lombardi, A. L.; Martínez, S., Interior penalty discontinuous Galerkin FEM for the \(p(x)\)-Laplacian, SIAM J. Numer. Anal., 50, 5, 2497-2521 (2012) · Zbl 1264.65094
[13] Huang, Y. Q.; Li, R.; Liu, W., Preconditioned descent algorithms for \(p\)-Laplacian, J. Sci. Comput., 32, 2, 343-371 (2007) · Zbl 1134.65079
[14] Zhou, G.; Huang, Y.; Feng, C., Preconditioned hybrid conjugate gradient algorithm for \(p\)-Laplacian, Int. J. Numer. Anal. Model., 2, Suppl., 123-130 (2005)
[15] Bermejo, R.; Infante, J.-A., A multigrid algorithm for the \(p\)-Laplacian, SIAM J. Sci. Comput., 21, 5, 1774-1789 (2000) · Zbl 0958.65132
[16] Iwaniec, T.; Manfredi, J. J., Regularity of \(p\)-harmonic functions on the plane, Rev. Mat. Iberoamericana, 5, 1-2, 1-19 (1989) · Zbl 0805.31003
[17] Barrett, J. W.; Liu, W. B., Finite element approximation of the \(p\)-Laplacian, Math. Comp., 61, 204, 523-537 (1993) · Zbl 0791.65084
[18] Caliari, M.; Zuccher, S., The inverse power method for the \(p(x)\)-Laplacian problem, J. Sci. Comput., 65, 2, 698-714 (2015) · Zbl 1329.65262
[19] Babaie-Kafaki, S.; Ghanbari, R., A hybridization of the polak-ribière-polyak and fletcher-reeves conjugate gradient methods, Numer. Algorithms, 68, 481-495 (2015) · Zbl 1311.65066
[20] Biezuner, R. J.; Brown, J.; Ercole, G.; Martins, E. M., Computing the first Eigenpair of the \(p\)-Laplacian via inverse iteration of sublinear supersolutions, J. Sci. Comput., 52, 1, 180-201 (2012) · Zbl 1255.65205
[21] Hirn, A., Finite element approximation of singular power-law systems, Math. Comp., 82, 283, 1247-1268 (2013) · Zbl 1336.76004
[22] Kelley, C. T., (Iterative Methods for Optimization. Iterative Methods for Optimization, Frontiers in Applied Mathematics, vol. 18 (1999), SIAM: SIAM Philadelphia) · Zbl 0934.90082
[23] Hecht, F., New development in FreeFem++, J. Numer. Math., 20, 3-4, 251-265 (2012) · Zbl 1266.68090
[24] Dennis, J. E.; Schnabel, R. B., (Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Classics in Applied Mathematics, vol. 16 (1996), SIAM: SIAM Philadelphia, PA, USA) · Zbl 0847.65038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.