×

Convexity properties of generalized trigonometric and hyperbolic functions. (English) Zbl 1394.33006

Summary: We study the power mean inequality for generalized trigonometric and hyperbolic functions with two parameters. The generalized \(p\)-trigonometric and \((p,q)\)-trigonometric functions were introduced by P. Lindqvist [Ric. Mat. 44, No. 2, 269–290 (1995; Zbl 0944.33002)] and S. Takeuchi [J. Math. Anal. Appl. 385, No. 1, 24–35 (2012; Zbl 1232.34029)], respectively.

MSC:

33E20 Other functions defined by series and integrals
26A51 Convexity of real functions in one variable, generalizations
26E60 Means

References:

[1] Abramowitz, M., Stegun, I., eds.: Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standards (Russian translation, Nauka 1979) (1964) · Zbl 0171.38503
[2] Anderson G.D., Vamanamurthy M.K., Vuorinen M.: Conformal invariants, inequalities and quasiconformal maps. Wiley, New York (1997) · Zbl 0885.30012
[3] Baricz Á.: Geometrically concave univariate distributions. J. Math. Anal. Appl. 363(1), 182-196 (2010) · Zbl 1185.60011
[4] Baricz, Á., Bhayo, B.A., Vuorinen, M.: Turán type inequalities for generalized inverse trigonometric functions (arXiv:1305.0938) · Zbl 1474.33001
[5] Bhayo, B.A., Vuorinen, M.: Inequalities for eigenfunctions of the p-Laplacian (arXiv.1101.3911) · Zbl 1294.33001
[6] Bhayo B.A., Vuorinen M.: On generalized trigonometric functions with two parameters. J. Approx. Theory 164, 1415-1426 (2012) · Zbl 1257.33052 · doi:10.1016/j.jat.2012.06.003
[7] Bhayo, B.A., Vuorinen, M.: Power mean inequality of generalized trigonometric functions (arXiv.1209.0873) · Zbl 1267.33015
[8] Biezuner R.J., Ercole G., Martins E.M.: Computing the first eigenvalue of the p-Laplacian via the inverse power method. J. Funct. Anal. 257, 243-270 (2009) · Zbl 1172.35047 · doi:10.1016/j.jfa.2009.01.023
[9] Bushell P.J., Edmunds D.E.: Remarks on generalised trigonometric functions. Rocky Mt. J. Math. 42, 25-57 (2012) · Zbl 1246.33001 · doi:10.1216/RMJ-2012-42-1-25
[10] Chu, Y.-M., Jiang, Y.-P., Wang, M.-K.: Inequalities for generalized trigonometric and hyperbolic sine functions (arXiv.1212.4681) · Zbl 1241.42019
[11] Drábek P., Manásevich R.: On the closed solution to some p−Laplacian nonhomogeneous eigenvalue problems. Differ. Integr. Equ. 12, 773-788 (1999) · Zbl 1015.34071
[12] Edmunds D.E., Gurka P., Lang J.: Properties of generalized trigonometric functions. J. Approx. Theory 164, 47-56 (2012) · Zbl 1241.42019 · doi:10.1016/j.jat.2011.09.004
[13] Jiang, W.-D., Qi, F.: Geometric convexity of the generalized sine and the generalized hyperbolic sine (arXiv.1301.3264)
[14] Klén, R., Manojlović, V., Simić, S., Vuorinen, M.: Bernoulli inequality and hypergeometric functions. Proc. Am. Math. Soc. (2013, in press) · Zbl 1288.26011
[15] Kuczma, M.: An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality, With a Polish summary. Prace Naukowe Uniwersytetu Ślaskiego w Katowicach [Scientific Publications of the University of Silesia], 489. Uniwersytet Ślaski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw (1985) · Zbl 0555.39004
[16] Lang J., Edmunds D.E.: Eigenvalues, Embeddings and Generalised Trigonometric Functions, Lecture Notes in Mathematics, vol. 2016. Springer, Berlin (2011) · Zbl 1220.47001
[17] Lindqvist P.: Some remarkable sine and cosine functions. Ricerche di Matematica 44, 269-290 (1995) · Zbl 0944.33002
[18] Lindqvist P., Peetre J.: Two remarkable identities, called twos, for inverses to some Abelian integrals. Amer. Math. Mon. 108(5), 403-410 (2001) · Zbl 0977.33010 · doi:10.2307/2695794
[19] Mršević M.: Convexity of the inverse function. Teach. Math. 11, 21-24 (2008)
[20] Takeuchi S.: Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian. J. Math. Anal. Appl. 385, 24-35 (2012) · Zbl 1232.34029 · doi:10.1016/j.jmaa.2011.06.063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.