×

Inverse iteration for the Monge-Ampère eigenvalue problem. (English) Zbl 1455.35127

The authors consider the Monge-Ampère eigenvalue problem: Find a convex function \(u \in C^2(\Omega) \cap C(\overline{\Omega})\) and a positive number \(\lambda_{MA}\) such that \(\mbox{det}D^2u = \lambda_{MA} (-u)^n\) in \(\Omega\) and \(u = 0\) on \(\partial \Omega\) hold, where \(\Omega\) is a bounded, convex domain in \(\mathbb{R}^n\). Some results on the existence of a solution of this problem and two methods for the solution of this problem, which are known from the literature, are summarized (see, [P.-L. Lions, Ann. Mat. Pura Appl. (4) 142, 263–275 (1985; Zbl 0594.35023)], [K. Tso, Invent. Math. 101, No. 2, 425–448 (1990; Zbl 0724.35040)], and [N. Q. Le, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18, No. 4, 1519–1559 (2018; Zbl 1478.47011)]). The authors propose the iterative method \(\mbox{det}D^2 u_{k+1} = R(u_k)(-u_k)^n\) in \(\Omega\), \(u_{k+1} = 0\) on \(\partial \Omega\) for constructing a sequence of functions \(u_k\). Hereby, \(u_0\) is an initial guess satisfying some conditions and \(R(u_k)\) denotes the Rayleigh quotient \(\int_\Omega (-u_k) \mbox{det}D^2 u_k/ \int_\Omega (-u_k)^{n+1}\). It is proved that the sequence \(\{u_k\}\) converges uniformly to a nonzero Monge-Ampère eigenfunction and that \(\lim_{k\rightarrow \infty} R(u_k) = \lambda_{MA}\).

MSC:

35J96 Monge-Ampère equations
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs

References:

[1] Biezuner, Rodney Josu\'{e}; Ercole, Grey; Martins, Eder Marinho, Computing the first eigenvalue of the \(p\)-Laplacian via the inverse power method, J. Funct. Anal., 257, 1, 243-270 (2009) · Zbl 1172.35047 · doi:10.1016/j.jfa.2009.01.023
[2] Bozorgnia, Farid, Convergence of inverse power method for first eigenvalue of \(p\)-Laplace operator, Numer. Funct. Anal. Optim., 37, 11, 1378-1384 (2016) · Zbl 1377.35119 · doi:10.1080/01630563.2016.1211682
[3] Brandolini, B.; Nitsch, C.; Trombetti, C., New isoperimetric estimates for solutions to Monge-Amp\`ere equations, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire, 26, 4, 1265-1275 (2009) · Zbl 1171.35370 · doi:10.1016/j.anihpc.2008.09.005
[4] Caffarelli, Luis A., Interior \(W^{2,p}\) estimates for solutions of the Monge-Amp\`ere equation, Ann. of Math. (2), 131, 1, 135-150 (1990) · Zbl 0704.35044 · doi:10.2307/1971510
[5] Caffarelli, L. A., A localization property of viscosity solutions to the Monge-Amp\`ere equation and their strict convexity, Ann. of Math. (2), 131, 1, 129-134 (1990) · Zbl 0704.35045 · doi:10.2307/1971509
[6] Caffarelli, Luis A., Some regularity properties of solutions of Monge Amp\`ere equation, Comm. Pure Appl. Math., 44, 8-9, 965-969 (1991) · Zbl 0761.35028 · doi:10.1002/cpa.3160440809
[7] Figalli, Alessio, The Monge-Amp\`ere equation and its applications, Zurich Lectures in Advanced Mathematics, x+200 pp. (2017), European Mathematical Society (EMS), Z\"{u}rich · Zbl 1435.35003 · doi:10.4171/170
[8] Guti\'{e}rrez, Cristian E., The Monge-Amp\`ere equation, Progress in Nonlinear Differential Equations and their Applications 89, xiv+216 pp. (2016), Birkh\"{a}user/Springer, [Cham] · Zbl 1356.35004 · doi:10.1007/978-3-319-43374-5
[9] Hartenstine, David, The Dirichlet problem for the Monge-Amp\`ere equation in convex (but not strictly convex) domains, Electron. J. Differential Equations, No. 138, 9 pp. (2006) · Zbl 1128.35324
[10] Hartenstine, David, Brunn-Minkowski-type inequalities related to the Monge-Amp\`ere equation, Adv. Nonlinear Stud., 9, 2, 277-294 (2009) · Zbl 1181.35126 · doi:10.1515/ans-2009-0204
[11] Hynd, Ryan; Lindgren, Erik, Inverse iteration for \(p\)-ground states, Proc. Amer. Math. Soc., 144, 5, 2121-2131 (2016) · Zbl 1335.35070 · doi:10.1090/proc/12860
[12] Le, Nam Q., The eigenvalue problem for the Monge-Amp\`ere operator on general bounded convex domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 18, 4, 1519-1559 (2018) · Zbl 1478.47011
[13] Li, Xiaolong; Wang, Kui, Nonparametric hypersurfaces moving by powers of Gauss curvature, Michigan Math. J., 66, 4, 675-682 (2017) · Zbl 1379.53011 · doi:10.1307/mmj/1508810813
[14] Lions, P.-L., Two remarks on Monge-Amp\`ere equations, Ann. Mat. Pura Appl. (4), 142, 263-275 (1986) (1985) · Zbl 0594.35023 · doi:10.1007/BF01766596
[15] Maldonado, Diego, The Monge-Amp\`ere quasi-metric structure admits a Sobolev inequality, Math. Res. Lett., 20, 3, 527-536 (2013) · Zbl 1354.49081 · doi:10.4310/MRL.2013.v20.n3.a10
[16] Neilan, Michael; Salgado, Abner J.; Zhang, Wujun, Numerical analysis of strongly nonlinear PDEs, Acta Numer., 26, 137-303 (2017) · Zbl 1381.65092 · doi:10.1017/S0962492917000071
[17] Oliker, Vladimir, Evolution of nonparametric surfaces with speed depending on curvature. I. The Gauss curvature case, Indiana Univ. Math. J., 40, 1, 237-258 (1991) · Zbl 0737.53002 · doi:10.1512/iumj.1991.40.40010
[18] Salani, Paolo, A Brunn-Minkowski inequality for the Monge-Amp\`ere eigenvalue, Adv. Math., 194, 1, 67-86 (2005) · Zbl 1128.35339 · doi:10.1016/j.aim.2004.05.011
[19] Tian, Gu-Ji; Wang, Xu-Jia, A class of Sobolev type inequalities, Methods Appl. Anal., 15, 2, 263-276 (2008) · Zbl 1181.46028 · doi:10.4310/MAA.2008.v15.n2.a10
[20] Tso, Kaising, On a real Monge-Amp\`ere functional, Invent. Math., 101, 2, 425-448 (1990) · Zbl 0724.35040 · doi:10.1007/BF01231510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.