×

Central extensions of preordered groups. (Extensions centrales de groupes préordonnés.) (English. French summary) Zbl 1539.18008

Summary: We prove that the category of preordered groups contains two full reflective subcategories that give rise to some interesting Galois theories. The first one is the category of so-called commutative objects, which are precisely the preordered groups whose group law is commutative. The second one is the category of abelian objects, which turns out to be the category of monomorphisms in the category of abelian groups. We give a precise description of the reflector to this subcategory and we prove that it induces an admissible Galois structure and then a natural notion of categorical central extension. We then characterize the central extensions of preordered groups in purely algebraic terms; these are shown to be the central extensions of groups having the additional property that their restriction to positive cones is a special Schreier surjection of monoids.

MSC:

18E50 Categorical Galois theory
06F15 Ordered groups
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
18C40 Structured objects in a category (group objects, etc.)
18E08 Regular categories, Barr-exact categories

References:

[1] F. Borceux & D. Bourn -Mal’cev, protomodular, homological and semi-abelian categories, Mathematics and Its Applications, no. 566, Kluwer, 2004. · Zbl 1061.18001
[2] D. Bourn, N. Martins-Ferreira, A. Montoli & M. Sobral -Schreier split epimorphisms in monoids and in semirings, Textos de Matemática (Série B), no. 45, Departamento de Matemática da Universi-dade de Coimbra, 2014.
[3] M. Clementino, N. Martins-Ferreira & A. Montoli -“On the categorical behaviour of preordered groups”, J. Pure Appl. Algebra 223 (2019), p. 4226-4245. · Zbl 1468.18012
[4] M. Duckerts, T. Everaert & M. Gran -“A description of the fun-damental group in terms of commutators and closure operators”, J. Pure Appl. Algebra 216 (2012), no. 8-9, p. 1837-1851. · Zbl 1257.18012
[5] M. Gran & D. Rodelo -“On the characterization of Jonsson-Tarski and of subtractive varieties”, Diagrammes S67-68 (2012), p. 101-115. · Zbl 1331.08003
[6] G. Janelidze -“Pure Galois theory in categories”, J. Algebra 132 (1990), no. 2, p. 270-286. · Zbl 0702.18006
[7] Categorical Galois theory: revision and some recent developments, Math. Appl., vol. 565, Kluwer Acad. Publ., 2004. · Zbl 1072.18003
[8] ”Galois groups, abstract commutators, and Hopf formula”, Appl. Categor. Struct. 16 (2008), p. 653-668. · Zbl 1226.18003
[9] G. Janelidze & G. Kelly -“Galois theory and a general notion of central extension”, J. Pure Appl. Algebra 97 (1994), p. 135-161. · Zbl 0813.18001
[10] G. Janelidze, M. Sobral & W. Tholen -“Beyond Barr exactness: effective descent morphisms”, in Categorical Foundations (M. Pedicchio & W. Tholen, eds.), Encyclopedia of Mathematics and Its Applications, 2004, p. 359-405. · Zbl 1047.18010
[11] G. Janelidze & W. Tholen -“Facets of descent, II”, Appl. Categ. Struct. 5 (1997), p. 229-248. · Zbl 0880.18007
[12] Z. Janelidze -“Subtractive categories”, Appl. Categor. Struct. 13 (2005), p. 343-350. · Zbl 1095.18002
[13] ”The pointed subobject functor, 3 × 3 lemmas, and subtractivity of spans”, Theory Appl. Categ. 23 (2010), no. 11, p. 221-242. · Zbl 1234.18009
[14] A. Montoli, D. Rodelo & T. Van der Linden -“A Galois theory for monoids”, Theory Appl. Categ. 29 (2014), no. 7, p. 198-214. tome 151 -2023 -n o 4 · Zbl 1311.18013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.