×

Variations of the shifting lemma and Goursat categories. (English) Zbl 1472.08009

Summary: We prove that Mal’tsev and Goursat categories may be characterized through variations of the Shifting Lemma, that is classically expressed in terms of three congruences \(R\), \(S\) and \(T\), and characterizes congruence modular varieties. We first show that a regular category \(\mathbb{C}\) is a Mal’tsev category if and only if the Shifting Lemma holds for reflexive relations on the same object in \(\mathbb{C}\). Moreover, we prove that a regular category \(\mathbb{C}\) is a Goursat category if and only if the Shifting Lemma holds for a reflexive relation \(S\) and reflexive and positive relations \(R\) and \(T\) in \(\mathbb{C}\). In particular this provides a new characterization of 2-permutable and 3-permutable varieties and quasi-varieties of universal algebras.

MSC:

08C05 Categories of algebras
08B05 Equational logic, Mal’tsev conditions
08A30 Subalgebras, congruence relations
08B10 Congruence modularity, congruence distributivity
18C05 Equational categories
18B99 Special categories
18E10 Abelian categories, Grothendieck categories

References:

[1] Barr, M., Grillet, P.A., Van Osdol, D.H.: Exact categories and categories of sheaves. Lecture Notes in Math., vol. 236. Springer, Berlin (1971) · Zbl 0223.18009 · doi:10.1007/BFb0058579
[2] Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories, vol. 566. Kluwer, Dordrecht (2004) · Zbl 1061.18001 · doi:10.1007/978-1-4020-1962-3
[3] Bourn, D., Gran, M.: Categorical Aspects of Modularity. Galois Theory, Hopf Algebras and Semiabelian Categories, Fields Instit. Commun., 43. Amer. Math. Soc., Providence RI, 77-100, (2004) · Zbl 1081.08011
[4] Bourn, D., Gran, M.: Normal sections and direct product decompositions. Comm. Algebra. 32(10), 3825-3842 (2004) · Zbl 1062.18003 · doi:10.1081/AGB-200027750
[5] Carboni, A., Kelly, G.M., Pedicchio, M.C.: Some remarks on Maltsev and Goursat categories. Appl. Categ. Struct. 1(4), 385-421 (1993) · Zbl 0799.18002 · doi:10.1007/BF00872942
[6] Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure Appl. Algebra 69(3), 271-284 (1991) · Zbl 0722.18005 · doi:10.1016/0022-4049(91)90022-T
[7] Carboni, A., Pedicchio, M.C., Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories. In: Category theory 1991 (Montreal, PQ, 1991), CMS Conf. Proc., 13, Amer. Math. Soc., Providence, RI, 97-109 (1992) · Zbl 0791.18005
[8] Gran, M., Sterck, F., Vercruysse, J.: A semi-abelian extension of a theorem by Takeuchi. J. Pure Appl. Algebra. arXiv:1808.04998 (2018) · Zbl 1440.18013
[9] Gumm, H.P.: Geometrical methods in congruence modular algebras. Mem. Am. Math. Soc. 45, 286 (1983) · Zbl 0547.08006
[10] Hagemann, J., Mitschke, A.: On \[n\] n-permutable congruences. Algebra Univ. 3, 8-12 (1973) · Zbl 0273.08001 · doi:10.1007/BF02945100
[11] Janelidze, G.: A history of selected topics in categorical algebra I: From Galois theory to abstract commutators and internal groupoids. Categ. Gen. Algebraic Struct. Appl. 5(1), 1-54 (2016) · Zbl 1375.18008
[12] Johnstone, P.T., Pedicchio, M.C.: Remarks on continuous Mal’cev algebras. Rend. Istit. Mat. Univ. Trieste 25, 277-297 (1993) · Zbl 0821.18003
[13] Jónnsson, B.: On the representation of lattices. Math. Scand. 1, 193-206 (1953) · Zbl 0053.21304 · doi:10.7146/math.scand.a-10377
[14] Kearnes, K., McKenzie, R.: Commutator theory for relatively modular quasivarieties. Trans. Am. Math. Soc. 331, 465-502 (1992) · Zbl 0772.08007 · doi:10.1090/S0002-9947-1992-1062872-X
[15] Kiss, E.W.: Three remarks on the modular commutator. Algebra Univ. 29, 455-476 (1992) · Zbl 0773.08005 · doi:10.1007/BF01190773
[16] Mal’cev, A.I.: On the general theory of algebraic systems. Mat. Sbornik N.S. 35, 3-20 (1954) · Zbl 0057.02403
[17] Martins-Ferreira, N., Rodelo, D., Van der Linden, T.: An observation on n-permutability. Bull. Belg. Math. Soc. Simon Stevin 21(2), 223-230 (2014) · Zbl 1301.08014
[18] Mitschke, A.: Implication algebras are \[33\]-permutable and \[33\]-distributive. Algebra Univ. 1, 182-186 (1971) · Zbl 0242.08005 · doi:10.1007/BF02944976
[19] Pedicchio, M.C., Vitale, E.M.: On the abstract characterization of quasi-varieties. Algebra Univ. 43, 269-278 (2000) · Zbl 1011.08010 · doi:10.1007/s000120050158
[20] Selinger, P.: Dagger compact closed categories and completely positive maps. Electron. Notes Theor. Comput. Sci. 170, 139-163 (2007) · Zbl 1277.18008 · doi:10.1016/j.entcs.2006.12.018
[21] Smith, J.D.H.: Mal’cev varieties. Lecture Notes in Math, vol. 554. Springer, Berlin (1976) · Zbl 0344.08002 · doi:10.1007/BFb0095447
[22] Tull, S.: Conditions for an \[n\] n-permutable category to be Mal’tsev. Cah. Topol. Géom. Différ. Catég. 58(3 & 4), 189-194 (2017) · Zbl 1386.18003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.