×

Fault diagnosis of nonlinear and large-scale processes using novel modified kernel Fisher discriminant analysis approach. (English) Zbl 1333.93030

Summary: It is pretty significant for fault diagnosis timely and accurately to improve the dependability of industrial processes. In this study, fault diagnosis of nonlinear and large-scale processes by variable-weighted Kernel Fisher Discriminant Analysis (KFDA) based on Improved Biogeography-Based Optimisation (IBBO) is proposed, referred to as IBBO-KFDA, where IBBO is used to determine the parameters of variable-weighted KFDA, and variable-weighted KFDA is used to solve the multi-classification overlapping problem. The main contributions of this work are fourfold to further improve the performance of KFDA for fault diagnosis. First, a nonlinear fault diagnosis approach with variable-weighted KFDA is developed for maximizing separation between the overlapping fault samples. Second, kernel parameters and features selection of variable-weighted KFDA are simultaneously optimized using IBBO. Finally, a single fitness function that combines erroneous diagnosis rate with feature cost is created, a novel mixed kernel function is introduced to improve the classification capability in the feature space and diagnosis accuracy of the IBBO-KFDA, and serves as the target function in the optimization problem. Moreover, an IBBO approach is developed to obtain the better quality of solution and faster convergence speed. On the one hand, the proposed IBBO-KFDA method is first used on Tennessee Eastman process benchmark data sets to validate the feasibility and efficiency. On the other hand, IBBO-KFDA is applied to diagnose faults of automation gauge control system. Simulation results demonstrate that IBBO-KFDA can obtain better kernel parameters and feature vectors with a lower computing cost, higher diagnosis accuracy and a better real-time capacity.

MSC:

93A15 Large-scale systems
93C10 Nonlinear systems in control theory
94C12 Fault detection; testing in circuits and networks
Full Text: DOI

References:

[1] DOI: 10.1016/j.compchemeng.2006.09.015 · doi:10.1016/j.compchemeng.2006.09.015
[2] Chapelle O., Choosing multiple parameters for support vectors machines (2001)
[3] DOI: 10.1016/j.patcog.2007.08.009 · Zbl 1132.68627 · doi:10.1016/j.patcog.2007.08.009
[4] DOI: 10.1016/j.compchemeng.2003.10.002 · doi:10.1016/j.compchemeng.2003.10.002
[5] DOI: 10.1007/978-1-4471-0347-9 · doi:10.1007/978-1-4471-0347-9
[6] DOI: 10.1016/j.eswa.2006.05.010 · doi:10.1016/j.eswa.2006.05.010
[7] DOI: 10.1080/00207720050197794 · Zbl 1080.93537 · doi:10.1080/00207720050197794
[8] DOI: 10.1109/TCST.2009.2019750 · doi:10.1109/TCST.2009.2019750
[9] DOI: 10.1080/10789669.2007.10390958 · doi:10.1080/10789669.2007.10390958
[10] DOI: 10.1016/j.amc.2010.03.123 · Zbl 1206.90221 · doi:10.1016/j.amc.2010.03.123
[11] DOI: 10.1016/j.neucom.2008.04.027 · doi:10.1016/j.neucom.2008.04.027
[12] DOI: 10.1016/j.chemolab.2008.03.006 · doi:10.1016/j.chemolab.2008.03.006
[13] DOI: 10.1016/j.eswa.2005.09.024 · doi:10.1016/j.eswa.2005.09.024
[14] DOI: 10.1080/00207720903470197 · Zbl 1213.93016 · doi:10.1080/00207720903470197
[15] DOI: 10.1080/00207720050197848 · Zbl 1080.93559 · doi:10.1080/00207720050197848
[16] DOI: 10.1016/j.neucom.2011.03.034 · doi:10.1016/j.neucom.2011.03.034
[17] DOI: 10.1002/aic.690470918 · doi:10.1002/aic.690470918
[18] DOI: 10.1016/j.eswa.2007.11.043 · doi:10.1016/j.eswa.2007.11.043
[19] DOI: 10.1002/cem.979 · doi:10.1002/cem.979
[20] DOI: 10.1109/TPWRD.2011.2136441 · doi:10.1109/TPWRD.2011.2136441
[21] DOI: 10.1016/j.neucom.2007.10.003 · doi:10.1016/j.neucom.2007.10.003
[22] DOI: 10.1109/TEVC.2008.919004 · doi:10.1109/TEVC.2008.919004
[23] DOI: 10.1109/IJCNN.2002.1007589 · doi:10.1109/IJCNN.2002.1007589
[24] DOI: 10.1080/00207720050197820 · Zbl 1080.93637 · doi:10.1080/00207720050197820
[25] DOI: 10.1016/j.eswa.2008.06.046 · doi:10.1016/j.eswa.2008.06.046
[26] DOI: 10.1016/j.patcog.2003.10.006 · Zbl 1070.68604 · doi:10.1016/j.patcog.2003.10.006
[27] DOI: 10.1016/j.ymssp.2006.07.008 · doi:10.1016/j.ymssp.2006.07.008
[28] DOI: 10.1080/00207720802017834 · Zbl 1215.94101 · doi:10.1080/00207720802017834
[29] DOI: 10.1016/j.neucom.2005.08.009 · doi:10.1016/j.neucom.2005.08.009
[30] DOI: 10.1016/j.cherd.2010.01.005 · doi:10.1016/j.cherd.2010.01.005
[31] DOI: 10.1016/j.eswa.2010.12.034 · doi:10.1016/j.eswa.2010.12.034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.