×

Gravitational waves in warped compactifications. (English) Zbl 1437.83028

Summary: We study gravitational waves propagating on a warped Minkowski space-time with \(D-4\) compact extra dimensions. While Kaluza-Klein scales are typically too high for any current detection, we analyse how the warp factor changes the Kaluza-Klein spectrum of gravitational waves. To that end we provide a complete and explicit expression for the warp factor, as well as the Green’s function, on a \(d\)-dimensional torus. This expression differs from that of braneworld models and should find further uses in string compactifications. We then evaluate the Kaluza-Klein spectrum of gravitational waves. Our preliminary numerical results indicate not only a deviation from the standard toroidal spectrum, but also that the first masses get lowered due to the warp factor.

MSC:

83C35 Gravitational waves
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T33 Dimensional compactification in quantum field theory
83E15 Kaluza-Klein and other higher-dimensional theories
53Z05 Applications of differential geometry to physics

Software:

SGWBinner

References:

[1] LIGO Scientific and Virgo collaborations, GWTC-1: A Gravitational- Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X 9 (2019) 031040 [arXiv: 1811. 12907] [INSPIRE].
[2] N. Yunes, K. Yagi and F. Pretorius, Theoretical Physics Implications of the Binary Black-Hole Mergers GW150914 and GW151226, Phys. Rev.D 94 (2016) 084002 [arXiv: 1603 .08955] [INSPIRE].
[3] J.M. Ezquiaga and M. Zumalacárregui, Dark Energy After GW170817: Dead Ends and the Road Ahead, Phys. Rev. Lett.119 (2017) 251304 [arXiv:1710 . 05901] [INSPIRE].
[4] L. Barack et al., Black holes, gravitational waves and fundamental physics: a roadmap, Class. Quant. Grav.36 (2019) 143001 [arXiv :1806 . 05195] [INSPIRE].
[5] J.M. Ezquiaga and M. Zumalacárregui, Dark Energy in light of Multi-Messenger Gravitational- Wave astronomy, Front. Astron. Space Sci. 5 (2018) 44 [arXiv: 1807. 09241] [INSPIRE].
[6] Nair, R.; Perkins, S.; Silva, HO; Yunes, N., Fundamental Physics Implications for Higher-Curvature Theories from Binary Black Hole Signals in the LIGO-Virgo Catalog GWTC-1, Phys. Rev. Lett., 123, 191101 (2019)
[7] Calcagni, G.; Kuroyanagi, S.; Marsat, S.; Sakellariadou, M.; Tamanini, N.; Tasinato, G., Quantum gravity and gravitational-wave astronomy, JCAP, 10, 012 (2019) · Zbl 1515.83093
[8] D. Andriot and G. Lucena Gómez, Signatures of extra dimensions in gravitational waves, JCAP06 (2017) 048 [Erratum ibid.05 (2019) E01] [arXiv:1704.07392] [INSPIRE]. · Zbl 1515.83060
[9] M. Isi and A.J. WEinstein, Probing gravitational wave polarizations with signals from compact binary coalescences, arXiv:1710.03794 [INSPIRE].
[10] Hagihara, Y.; Era, N.; Iikawa, D.; Nishizawa, A.; Asada, H., Constraining extra gravitational wave polarizations with Advanced LIGO, Advanced Virgo and KAGRA and upper bounds from GW170817, Phys. Rev., D 100 (2019)
[11] LIGO Scientific and Virgo collaborations, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, Phys. Rev. Lett.119 (2017) 141101 [arXiv:1709.09660] [INSPIRE].
[12] LIGO Scientific and Virgo collaborations, Tests of General Relativity with GW170817, Phys. Rev. Lett.123 (2019) 011102 [arXiv:1811.00364] [INSPIRE].
[13] Brito, R., Gravitational wave searches for ultralight bosons with LIGO and LISA, Phys. Rev., D 96 (2017)
[14] D. Grin et al., Gravitational probes of ultra-light axions, arXiv:1904.09003 [INSPIRE].
[15] Wong, LK; Davis, A-C; Gregory, R., Effective field theory for black holes with induced scalar charges, Phys. Rev., D 100 (2019)
[16] Cardoso, V.; Gualtieri, L.; Moore, CJ, Gravitational waves and higher dimensions: Love numbers and Kaluza-Klein excitations, Phys. Rev., D 100, 124037 (2019)
[17] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett.83 (1999) 3370 [hep-ph/9905221] [INSPIRE]. · Zbl 0946.81063
[18] Randall, L.; Sundrum, R., An Alternative to compactification, Phys. Rev. Lett., 83, 4690 (1999) · Zbl 0946.81074
[19] Becker, K.; Becker, M., M theory on eight manifolds, Nucl. Phys., B 477, 155 (1996) · Zbl 0925.81190
[20] Dasgupta, K.; Rajesh, G.; Sethi, S., M theory, orientifolds and G-flux, JHEP, 08, 023 (1999) · Zbl 1060.81575
[21] Giddings, SB; Kachru, S.; Polchinski, J., Hierarchies from fluxes in string compactifications, Phys. Rev., D 66, 106006 (2002)
[22] H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology of the Randall-Sundrum Gauge Hierarchy Model, Phys. Rev. Lett.84 (2000) 2080 [hep-ph/9909255] [INSPIRE]. · Zbl 0959.81123
[23] S.S. Seahra, C. Clarkson and R. Maartens, Detecting extra dimensions with gravity wave spectroscopy: the black string brane-world, Phys. Rev. Lett.94 (2005) 121302 [gr-qc/0408032] [INSPIRE]. · Zbl 1086.83034
[24] C. Clarkson and S.S. Seahra, A gravitational wave window on extra dimensions, Class. Quant. Grav.24 (2007) F33 [astro-ph/0610470] [INSPIRE]. · Zbl 1114.83302
[25] Dillon, BM; Sanz, V., Kaluza-Klein gravitons at LHC2, Phys. Rev., D 96 (2017)
[26] Chakraborty, S.; Chakravarti, K.; Bose, S.; SenGupta, S., Signatures of extra dimensions in gravitational waves from black hole quasinormal modes, Phys. Rev., D 97, 104053 (2018)
[27] Visinelli, L.; Bolis, N.; Vagnozzi, S., Brane-world extra dimensions in light of GW170817, Phys. Rev., D 97 (2018)
[28] D. Andriot, J. Blåbäck and T. Van Riet, Minkowski flux vacua of type-II supergravities, Phys. Rev. Lett.118 (2017) 011603 [Erratum ibid.120 (2018) 169901] [arXiv:1609.00729] [INSPIRE].
[29] Andriot, D., New supersymmetric vacua on solvmanifolds, JHEP, 02, 112 (2016) · Zbl 1388.83718
[30] Macpherson, NT; Tomasiello, A., Minimal flux Minkowski classification, JHEP, 09, 126 (2017) · Zbl 1382.81188
[31] Apruzzi, F.; Geipel, JC; Legramandi, A.; Macpherson, NT; Zagermann, M., Minkowski_4× S^2solutions of IIB supergravity, Fortsch. Phys., 66, 1800006 (2018) · Zbl 1535.83135
[32] Bena, I.; Dudas, E.; Graña, M.; Lüst, S., Uplifting Runaways, Fortsch. Phys., 67, 1800100 (2019) · Zbl 1535.83123
[33] Córdova, C.; De Luca, GB; Tomasiello, A., Classical de Sitter Solutions of 10-Dimensional Supergravity, Phys. Rev. Lett., 122 (2019)
[34] Carta, F.; Moritz, J.; Westphal, A., Gaugino condensation and small uplifts in KKLT, JHEP, 08, 141 (2019)
[35] Blumenhagen, R.; Kläwer, D.; Schlechter, L., Swampland Variations on a Theme by KKLT, JHEP, 05, 152 (2019) · Zbl 1416.83112
[36] Cribiori, N.; Junghans, D., No classical (anti-)de Sitter solutions with O8-planes, Phys. Lett., B 793, 54 (2019) · Zbl 1421.83113
[37] I. Bena, A. Buchel and S. Lüst, Throat destabilization (for profit and for fun), arXiv:1910.08094 [INSPIRE].
[38] Bachas, C.; Estes, J., Spin-2 spectrum of defect theories, JHEP, 06, 005 (2011) · Zbl 1298.81207
[39] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 1., Wiley, New York (1989). · Zbl 0729.35001
[40] Shandera, S.; Shlaer, B.; Stoica, H.; Tye, SHH, Interbrane interactions in compact spaces and brane inflation, JCAP, 02, 013 (2004)
[41] M. Kim and L. McAllister, Monodromy Charge in D7-brane Inflation, arXiv:1812.03532 [INSPIRE].
[42] Richard, J-M; Terrisse, R.; Tsimpis, D., On the spin-2 Kaluza-Klein spectrum of AdS_4× S^2 (ℬ_4), JHEP, 12, 144 (2014)
[43] Csáki, C.; Erlich, J.; Hollowood, TJ; Shirman, Y., Universal aspects of gravity localized on thick branes, Nucl. Phys., B 581, 309 (2000) · Zbl 0985.83027
[44] Duff, MJ; Lu, JX, Black and super p-branes in diverse dimensions, Nucl. Phys., B 416, 301 (1994) · Zbl 1007.81530
[45] Youm, D., Black holes and solitons in string theory, Phys. Rept., 316, 1 (1999)
[46] D. Andriot and J. Blåbäck, Refining the boundaries of the classical de Sitter landscape, JHEP03 (2017) 102 [Erratum ibid.03 (2018) 083] [arXiv:1609.00385] [INSPIRE]. · Zbl 1377.83131
[47] C.V. Johnson, D-brane primer, in Strings, branes and gravity. Proceedings, Theoretical Advanced Study Institute, TASI’99, Boulder, U.S.A., 31 May-25 June 1999, pp. 129-350 (2000) [DOI] [hep-th/0007170] [INSPIRE]. · Zbl 1131.81312
[48] Maldacena, JM; Núñez, C., Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A, A 16, 822 (2001) · Zbl 0984.83052
[49] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press (2007) [INSPIRE]. · Zbl 1246.81199
[50] C.V. Johnson, Etudes on D-branes, in Nonperturbative aspects of strings, branes and supersymmetry. Proceedings, Spring School on nonperturbative aspects of string theory and supersymmetric gauge theories and Conference on super-five-branes and physics in 5 + 1 dimensions, Trieste, Italy, 23 March-3 April 1998, pp. 75-130 (1998) [hep-th/9812196] [INSPIRE]. · Zbl 1016.81501
[51] Verlinde, HL, Holography and compactification, Nucl. Phys., B 580, 264 (2000) · Zbl 0992.83071
[52] D.R. Hartree, The calculation of atomic structures, Wiley, New York, NY (1957). · Zbl 0079.21401
[53] Caprini, C.; Figueroa, DG, Cosmological Backgrounds of Gravitational Waves, Class. Quant. Grav., 35, 163001 (2018) · Zbl 1409.83039
[54] Caprini, C., Reconstructing the spectral shape of a stochastic gravitational wave background with LISA, JCAP, 11, 017 (2019)
[55] Frey, AR; Maharana, A., Warped spectroscopy: Localization of frozen bulk modes, JHEP, 08, 021 (2006)
[56] Burgess, CP, Warped Supersymmetry Breaking, JHEP, 04, 053 (2008) · Zbl 1246.81225
[57] Blaback, J.; Danielsson, UH; Junghans, D.; Van Riet, T.; Wrase, T.; Zagermann, M., Smeared versus localised sources in flux compactifications, JHEP, 12, 043 (2010) · Zbl 1294.81165
[58] D. Junghans, Backreaction of Localised Sources in String Compactifications, Ph.D. Thesis, Leibniz U., Hannover (2013) [arXiv:1309.5990] [INSPIRE].
[59] Das, S.; Haque, SS; Underwood, B., Constraints and horizons for de Sitter with extra dimensions, Phys. Rev., D 100 (2019)
[60] Giddings, SB; Maharana, A., Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev., D 73, 126003 (2006)
[61] Shiu, G.; Torroba, G.; Underwood, B.; Douglas, MR, Dynamics of Warped Flux Compactifications, JHEP, 06, 024 (2008)
[62] Douglas, MR; Torroba, G., Kinetic terms in warped compactifications, JHEP, 05, 013 (2009)
[63] Frey, AR; Torroba, G.; Underwood, B.; Douglas, MR, The Universal K¨ahler Modulus in Warped Compactifications, JHEP, 01, 036 (2009) · Zbl 1243.83057
[64] Martucci, L., On moduli and effective theory of N = 1 warped flux compactifications, JHEP, 05, 027 (2009)
[65] Martucci, L., Warping the Kähler potential of F-theory/ IIB flux compactifications, JHEP, 03, 067 (2015) · Zbl 1388.81583
[66] Grimm, TW; Pugh, TG; Weissenbacher, M., The effective action of warped M-theory reductions with higher derivative terms — Part I, JHEP, 01, 142 (2016) · Zbl 1388.83814
[67] Grimm, TW; Pugh, TG; Weissenbacher, M., The effective action of warped M-theory reductions with higher-derivative terms — Part II, JHEP, 12, 117 (2015) · Zbl 1388.83813
[68] Andriot, D.; Tsimpis, D., Laplacian spectrum on a nilmanifold, truncations and effective theories, JHEP, 09, 096 (2018) · Zbl 1398.83117
[69] Blåbäck, J.; van der Woerd, E.; Van Riet, T.; Williams, M., Domain walls inside localised orientifolds, JHEP, 12, 078 (2015) · Zbl 1388.83747
[70] E. Kiritsis, String theory in a nutshell, Princeton University Press (2007) [INSPIRE]. · Zbl 1120.81001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.