×

Anytime online novelty and change detection for mobile robots. (English) Zbl 1243.68301

Summary: In many mobile robot applications, the high cost of damaging the robot or its environment makes even rare failures unacceptable. To mitigate this risk, a robot must be able to detect potentially hazardous situations before it experiences a major failure. This problem therefore becomes one of novelty and change detection: how a robot can identify when perception inputs differ from prior inputs seen during training or previous operation in the same area. With this ability, the system can either avoid novel locations to minimize risk or stop and enlist human help via supervisory control or teleoperation. We present an anytime novelty detection algorithm that deals with noisy and redundant high-dimensional feature spaces that are common in robotics by utilizing prior class information within the training set. This approach is also well suited for online use when a constantly adjusting environmental model is beneficial. Furthermore, we address the problem of change detection in an environment of repeated operation by framing it as a location-specific version of novelty detection and present an online scene segmentation algorithm that improves accuracy across diverse environments. We validate these approaches through extensive experiments onboard two outdoor mobile robot platforms, show that our approaches are robust to noisy sensor data and moderate registration errors, and argue how such abilities could be key in increasing the real-world applications and impact of mobile robotics.

MSC:

68T40 Artificial intelligence for robotics
68T45 Machine vision and scene understanding

Software:

LIBSVM
Full Text: DOI

References:

[1] Anguelov , D. Taskar , B. Chatalbashev , V. Koller , D. Gupta , D. Heitz , G. Ng , A. 2005 Discriminative learning of Markov random fields for segmentation of 3D scan data 169 176
[2] Bradley , D. M. Unnikrishnan , R. Bagnell , J. 2007 Vegetation detection for driving in complex environments 503 508
[3] Campbell, Neural information processing systems pp 395– (2000)
[4] Chang , C.-C. Lin , C.-J. 2001 LIBSVM: A library for support vector machines http://www.csie.ntu.edu.tw/cjlin/libsvm
[5] Comaniciu, Mean shift: A robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (5) pp 603– (2002) · doi:10.1109/34.1000236
[6] Duda, Pattern classification (2000)
[7] Felzenszwalb, Efficient graph-based image segmentation, International Journal of Computer Vision 59 (2) pp 167– (2004) · doi:10.1023/B:VISI.0000022288.19776.77
[8] Golovinskiy , A. Funkhouser , T. 2009 Min-cut based segmentation of point clouds
[9] Hayton, In Advances in neural information processing systems 13 pp 946– (2000)
[10] Hoffmann, Kernel PCA for novelty detection, Pattern Recognition 40 (3) pp 863– (2007) · Zbl 1118.68140 · doi:10.1016/j.patcog.2006.07.009
[11] Hoiem , D. Efros , A. A. Hebert , M. 2005 Geometric context from a single image 654 661
[12] Huber , D. Kapuria , A. Donamukkala , R. R. Hebert , M. 2004 Parts-based 3D object classification
[13] Huwer , S. Niemann , H. 2000 Adaptive change detection for real-time surveillance applications 37 45
[14] Japkowicz , N. Myers , C. Gluck , M. A. 1995 A novelty detection approach to classification 518 523
[15] Johnson, Using spin images for efficient object recognition in cluttered 3D scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence 21 (5) pp 433– (1999) · doi:10.1109/34.765655
[16] Kelly, Toward reliable off road autonomous vehicles operating in challenging environments, International Journal of Robotics Research 25 (5-6) pp 449– (2006) · doi:10.1177/0278364906065543
[17] Kivinen, Neural information processing systems pp 785– (2001)
[18] Kolmogorov, What energy functions can be minimized via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence pp 26– (2004) · Zbl 1039.68666
[19] Kuno , Y. Watanabe , T. Shimosakoda , Y. Nakagawa , S. 1996 Automated detection of human for visual surveillance system 865 869
[20] Lalonde, Natural terrain classification using three-dimensional ladar data for ground robot mobility, Journal of Field Robotics 23 (1) pp 839– (2006) · doi:10.1002/rob.20134
[21] Makarov , A. Vesin , J. M. Kunt , M. 1994 Intrusion detection using extraction of moving edges 804 807
[22] Malisiewicz , T. Efros , A. A. 2007 Improving spatial support for objects via multiple segmentations
[23] Manevitz, One-class SVMs for document classification, Journal of Machine Learning Research 2 pp 139– (2001) · Zbl 1002.68597 · doi:10.1162/15324430260185574
[24] Markou, Novelty detection: A review-Part 1: Statistical approaches, Signal Processing 83 (12) pp 2481– (2003a) · Zbl 1145.94402 · doi:10.1016/j.sigpro.2003.07.018
[25] Markou, Novelty detection: A review-Part 2: Neural network based approaches, Signal Processing 83 (12) pp 2499– (2003b) · Zbl 1145.94403 · doi:10.1016/j.sigpro.2003.07.019
[26] Marsland, On-line novelty detection for autonomous mobile robots, Robotics and Autonomous Systems 51 (2-3) pp 191– (2005) · doi:10.1016/j.robot.2004.10.006
[27] Mas, Monitoring land-cover changes: A comparison of change detection techniques, International Journal of Remote Sensing 20 (1) pp 139– (1999) · doi:10.1080/014311699213659
[28] Mori , G. Belongie , S. J. Malik , J. 2001 Shape contexts enable efficient retrieval of similar shapes 723 730
[29] Muchoney, Change detection for monitoring forest defoliation, Photogrammetric Engineering and Remote Sensing 60 (10) pp 1243– (1994)
[30] Munoz, Onboard contextual classification of 3-D point clouds with learned high-order Markov random fields (2009) · doi:10.1109/ROBOT.2009.5152856
[31] Neto, Visual novelty detection with automatic scale selection, Robotics and Autonomous Systems 55 (9) pp 693– (2007) · doi:10.1016/j.robot.2007.05.012
[32] Neuman, Segmentation-based online change detection for mobile robots (Tech. Rep. CMU-RI-TR-10-30) (2010)
[33] Neuman , B. Sofman , B. Stentz , A. T. Bagnell , J. A. D. 2011 Segmentation-based online change detection for mobile robots · Zbl 1243.68301
[34] Paragios , N. Tziritas , G. 1996 Detection and location of moving objects using deterministic relaxation algorithms 201 205
[35] Pilarski , T. Bagnell , J. Stentz , A. 2007 Hazard detection for familiar terrains via change detection
[36] Ratliff, Learning to search: Functional gradient techniques for imitation learning, Autonomous Robots, Special Issue on Robot Learning 27 (1) pp 25– (2009) · doi:10.1007/s10514-009-9121-3
[37] Ruiz-Correa, Neural information processing systems (2003)
[38] Ryan, Advances in neural information processing systems 10 (1998)
[39] Schölkopf, Learning with kernels (2002)
[40] Schölkopf, Neural information processing systems pp 582– (1999)
[41] Shapiro, Computer vision (2001)
[42] Shi , J. Malik , J. 1997 Normalized cuts and image segmentation
[43] Shor, Minimization methods for non-differentiable functions (1985) · Zbl 0561.90058 · doi:10.1007/978-3-642-82118-9
[44] Silver, Learning from demonstration for autonomous navigation in complex unstructured terrain, International Journal of Robotics Research 29 pp 1565– (2010) · doi:10.1177/0278364910369715
[45] Sleator, Amortized efficiency of list update and paging rules, Communications of the ACM 28 pp 202– (1985) · doi:10.1145/2786.2793
[46] Sofman , B. Bagnell , J. A. Stentz , A. 2010 Anytime online novelty detection for vehicle safeguarding · Zbl 1243.68301
[47] Solaimani, Investigation of land use changes on soil erosion process using geographical information system, International Journal of Environmental Science and Technology 6 pp 415– (2009) · doi:10.1007/BF03326080
[48] Stentz , A. Bares , J. Pilarski , T. Stager , D. 2007 The crusher system for autonomous navigation
[49] Tarassenko , L. Hayton , P. Cerneaz , N. Brady , M. 1995 Novelty detection for the identification of masses in mammograms 442 447
[50] Taskar , B. Chatalbashev , V. Koller , D. 2004 Learning associative Markov networks
[51] Tax, Support vector domain description, Pattern Recognition Letters 20 (11-13) pp 1191– (1999) · doi:10.1016/S0167-8655(99)00087-2
[52] Thrun, Stanley: The robot that won the DARPA Grand Challenge, Journal of Field Robotics 23 (9) pp 661– (2006) · doi:10.1002/rob.20147
[53] Tottrup, Forest and land cover mapping in a tropical highland region, Photogrammetric Engineering and Remote Sensing 73 (9) pp 1057– (2007)
[54] Urmson, Autonomous driving in urban environments: Boss and the Urban Challenge, Journal of Field Robotics 25 (8) pp 425– (2008) · doi:10.1002/rob.20255
[55] Wellington , C. Courville , A. Stentz , A. 2005 Interacting Markov random fields for simultaneous terrain modeling and obstacle detection
[56] Worden, Structural fault detection using a novelty meassure, Journal of Sound and Vibration 201 (1) pp 85– (1997) · doi:10.1006/jsvi.1996.0747
[57] Zabih , R. Veksler , O. Boykov , Y. Y. 1999 Fast approximate energy minimization via graph cuts 377 384
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.