×

About the power pseudovariety \(\mathbf{PCS}\). (English) Zbl 1508.20077

Summary: The power pseudovariety \(\mathbf{PCS}\), that is, the pseudovariety of finite semigroups generated by all power semigroups of finite completely simple semigroups has recently been characterized as the pseudovariety \(\mathbf{AgBG}\) of all so-called aggregates of block groups. This characterization can be expressed as the equality of pseudovarieties \(\mathbf{PCS} = \mathbf{AgBG}\). In fact, a longer sequence of equalities of pseudovarieties, namely the sequence of equalities \(\mathbf{PCS} = \mathbf{J} \ast \mathbf{CS} = \mathbf{J} \text{\textcircled{m}} \mathbf{CS} = \mathbf{AgBG}\) has been verified at the same time. Here, \(\mathbf{J}\) is the pseudovariety of all \(\mathcal{J}\)-trivial semigroups, \(\mathbf{CS}\) is the pseudovariety of all completely simple semigroups, \(\mathbf{J} \ast \mathbf{CS}\) is the pseudovariety generated by the family of all semidirect products of \(\mathcal{J}\)-trivial semigroups by completely simple semigroups, and \(\mathbf{J} \text{\textcircled{m}} \mathbf{CS}\) is the pseudovariety generated by the Mal’cev product of the pseudovarieties \(\mathbf{J}\) and \(\mathbf{CS}\). In this paper, another different proof of these equalities is provided first. More precisely, the equalities \(\mathbf{PCS} = \mathbf{J} \ast \mathbf{CS} = \mathbf{J} \text{\textcircled{m}} \mathbf{CS}\) are given a new proof, while the equality \(\mathbf{J} \text{\textcircled{m}} \mathbf{CS} = \mathbf{AgBG}\) is quoted from a foregoing paper. Subsequently in this paper, this new proof of the mentioned equalities is further refined to yield a proof of the following more general result: For any pseudovariety \(\mathbf{H}\) of groups, let \(\mathbf{CS}(\mathbf{H})\) stand for the pseudovariety of all completely simple semigroups whose subgroups belong to \(\mathbf{H}\). Then it turns out that, for every locally extensible pseudovariety \(\mathbf{H}\) of groups, the equalities of pseudovarieties \(\mathbf{P}(\mathbf{CS}(\mathbf{H})) = \mathbf{J} \ast \mathbf{CS}(\mathbf{H}) = \mathbf{J} \text{\textcircled{m}} \mathbf{CS} (\mathbf{H})\) hold.

MSC:

20M07 Varieties and pseudovarieties of semigroups
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)

References:

[1] J. Almeida, Finite semigroups and universal algebra, Series in Algebra 3, World Scientific, River Edge, NJ, 1994. · Zbl 0844.20039
[2] J. Almeida, “Power semigroups: Results and problems”, pp. 399-415 in Algebraic engineering (Kyoto, 1997), World Scientific, Singapore, 1999. · Zbl 1030.20036 · doi:10.1142/3953
[3] J. Almeida and P. Weil, “Profinite categories and semidirect products”, J. Pure Appl. Algebra 123:1-3 (1998), 1-50. · Zbl 0891.20037 · doi:10.1016/S0022-4049(96)00083-7
[4] C. J. Ash, “Inevitable graphs: a proof of the type \[{\rm II}\] conjecture and some related decision procedures”, Internat. J. Algebra Comput. 1:1 (1991), 127-146. · Zbl 0722.20039 · doi:10.1142/S0218196791000079
[5] K. Auinger, “On the power pseudovariety PCS”, Publ. Mat. 56:2 (2012), 449-465. · Zbl 1306.20058 · doi:10.5565/PUBLMAT_56212_08
[6] K. Auinger and B. Steinberg, “The geometry of profinite graphs with applications to free groups and finite monoids”, Trans. Amer. Math. Soc. 356:2 (2004), 805-851. · Zbl 1033.20028 · doi:10.1090/S0002-9947-03-03358-0
[7] K. Auinger and B. Steinberg, “Constructing divisions into power groups”, Theoret. Comput. Sci. 341:1-3 (2005), 1-21. · Zbl 1077.68056 · doi:10.1016/j.tcs.2004.12.027
[8] K. Auinger and B. Steinberg, “A constructive version of the Ribes-Zalesskiĭ product theorem”, Math. Z. 250:2 (2005), 287-297. · Zbl 1074.20022 · doi:10.1007/s00209-004-0752-y
[9] K. Auinger and B. Steinberg, “On power groups and embedding theorems for relatively free profinite monoids”, Math. Proc. Cambridge Philos. Soc. 138:2 (2005), 211-232. · Zbl 1098.20043 · doi:10.1017/S0305004104008175
[10] T. C. Brown, “An interesting combinatorial method in the theory of locally finite semigroups”, Pacific J. Math. 36 (1971), 285-289. · Zbl 0211.33504 · doi:10.2140/pjm.1971.36.285
[11] S. Eilenberg, Automata, languages, and machines, Vol. B, Pure and Applied Mathematics 58, Academic, New York, 1976. · Zbl 0359.94067
[12] K. Henckell and J. Rhodes, “Reduction theorem for the type-\[{\rm II}\] conjecture for finite monoids”, J. Pure Appl. Algebra 67:3 (1990), 269-284. · Zbl 0729.20026 · doi:10.1016/0022-4049(90)90048-M
[13] K. Henckell and J. Rhodes, “The theorem of Knast, the \[PG=BG\] and type-\[{\rm II}\] conjectures”, pp. 453-463 in Monoids and semigroups with applications (Berkeley, 1989)), edited by J. Rhodes, World Scientific, River Edge, NJ, 1991. · Zbl 0826.20054
[14] K. Henckell, S. W. Margolis, J.-E. Pin, and J. Rhodes, “Ash’s type \[{\rm II}\] theorem, profinite topology and Mal’cev products, Part I”, Internat. J. Algebra Comput. 1:4 (1991), 411-436. · Zbl 0791.20079 · doi:10.1142/S0218196791000298
[15] J. M. Howie, An introduction to semigroup theory, L. M. S. Monographs 7, Academic, London, 1976. · Zbl 0355.20056
[16] P. Jones and P. Trotter, “Semidirect products of regular semigroups”, Trans. Amer. Math. Soc. 349:11 (1997), 4265-4310. · Zbl 0892.20037 · doi:10.1090/S0002-9947-97-01638-3
[17] J. Kad’ourek, “On the locality of the pseudovariety DG”, J. Inst. Math. Jussieu 7:1 (2008), 93-180. · Zbl 1147.20051 · doi:10.1017/S1474748007000059
[18] J. Kad’ourek, “An upper bound for the power pseudovariety PCS”, Monatsh. Math. 166:3-4 (2012), 411-440. · Zbl 1255.20051 · doi:10.1007/s00605-011-0285-5
[19] J. Kad’ourek, “On a locality-like property of the pseudovariety \[\bf J\]”, Period. Math. Hungar. 76:1 (2018), 1-46. · Zbl 1399.20059 · doi:10.1007/s10998-017-0186-z
[20] A. L. Šmel’kin, “Wreath products and varieties of groups”, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 149-170. In Russian. · Zbl 0135.04701
[21] A. L. Šmel’kin, “A remark on my paper ‘Wreath products and varieties of groups”’, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 443-444. In Russian. · Zbl 0165.03701
[22] R. Knast, “Some theorems on graph congruences”, RAIRO Inform. Théor. 17:4 (1983), 331-342. · doi:10.1051/ita/1983170403311
[23] G. Lallement, Semigroups and combinatorial applications, Wiley, New York, 1979. · Zbl 0421.20025
[24] S. W. Margolis and J.-E. Pin, “Varieties of finite monoids and topology for the free monoid”, pp. 113-129 in Proceedings of the 1984 Marquette conference on semigroups (Milwaukee, WI, 1984)), edited by K. Byleen et al., Marquette University, Milwaukee, WI, 1985. · Zbl 0576.20037
[25] M. Petrich and N. R. Reilly, Completely regular semigroups, Canadian Mathematical Society Series of Monographs and Advanced Texts 23, Wiley, New York, 1999. · Zbl 0967.20034
[26] J.-E. Pin, “\[{\bf BG}={\bf PG}\]: a success story”, pp. 33-47 in Semigroups, formal languages and groups (York, 1993), edited by J. Fountain, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 466, Kluwer, Dordrecht, 1995. · Zbl 0872.20054
[27] L. Ribes and P. A. Zalesskii, “On the profinite topology on a free group”, Bull. London Math. Soc. 25:1 (1993), 37-43. · Zbl 0811.20026 · doi:10.1112/blms/25.1.37
[28] B. Steinberg, “Polynomial closure and topology”, Internat. J. Algebra Comput. 10:5 (2000), 603-624. · Zbl 1010.20045 · doi:10.1142/S0218196700000285
[29] B. Steinberg, “\[{\rm{PG}} = {\rm{BG}} \]: redux”, pp. 181-190 in Semigroups (Braga, 1999), edited by P. Smith et al., World Scientific, River Edge, NJ, 2000. · Zbl 0982.20045
[30] B. Steinberg, “Finite state automata: a geometric approach”, Trans. Amer. Math. Soc. 353:9 (2001), 3409-3464. · Zbl 0980.20067 · doi:10.1090/S0002-9947-01-02774-X
[31] B. Steinberg, “Inevitable graphs and profinite topologies: some solutions to algorithmic problems in monoid and automata theory, stemming from group theory”, Internat. J. Algebra Comput. 11:1 (2001), 25-71. · Zbl 1024.68064 · doi:10.1142/S0218196701000462
[32] B. Steinberg, “A note on the equation \[{\bf PH}={\bf J}\ast{\bf H} \]”, Semigroup Forum 63:3 (2001), 469-474. · Zbl 1020.20036 · doi:10.1007/s002330010052
[33] B. Steinberg, “Inverse automata and profinite topologies on a free group”, J. Pure Appl. Algebra 167:2-3 (2002), 341-359. · Zbl 0999.20016 · doi:10.1016/S0022-4049(01)00030-5
[34] B. Steinberg, “A note on the power semigroup of a completely simple semigroup”, Semigroup Forum 76:3 (2008), 584-586. · Zbl 1151.20045 · doi:10.1007/s00233-008-9044-x
[35] B. Tilson, “Categories as algebra: an essential ingredient in the theory of monoids”, J. Pure Appl. Algebra 48:1-2 (1987), 83-198. · Zbl 0627.20031 · doi:10.1016/0022-4049(87)90108-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.