×

Destruction of cluster structures in an ensemble of chaotic maps with noise-modulated nonlocal coupling. (English) Zbl 1496.37052

Summary: We study numerically the spatio-temporal dynamics of a ring network of nonlocally coupled logistic maps when the coupling strength is modulated by colored Gaussian noise. Two cases of noise modulation are considered: 1) when the coupling coefficients characterizing the influence of neighbors on different elements are subjected to independent noise sources, and 2) when the coupling coefficients for all the network elements are modulated by the same stochastic signal. Without noise, the ring of chaotic maps exhibits a chimera state. The impact of noise-modulated coupling between the ring elements is explored when the parameter, which controls the correlation time and the spectral width of colored noise, and the noise intensity are varied. We investigate how the spatio-temporal structures observed in the ring evolve as the noise parameters change. The numerical results obtained are used to construct regime diagrams for the two cases of noise modulation. Our findings show the possibility of controlling the spatial structures in the ring in the presence of noise. Depending on the type of noise modulation, the spectral properties and intensity of colored noise, one can suppress the incoherent clusters of chimera states, and induce the regime of solitary states or synchronize chaotic oscillations of all the ring elements.

MSC:

37H10 Generation, random and stochastic difference and differential equations
37H12 Random iteration
Full Text: DOI

References:

[1] Horsthemke, W.; Lefever, R., Noise-Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (1984), Berlin: Springer, Berlin · Zbl 0529.60085
[2] Arnold, L., Random Dynamical Systems (1998), Berlin: Springer, Berlin · Zbl 0906.34001 · doi:10.1007/978-3-662-12878-7
[3] Schimansky-Geier, L.; Herzel, H., Positive Lyapunov Exponents in the Kramers Oscillator, J. Stat. Phys., 70, 1, 141-147 (1993) · Zbl 0943.37504 · doi:10.1007/BF01053959
[4] Arnold, L.; Sri Namachshivaya, N.; Schenk-Hoppé, K. R., Toward an Understanding of Stochastic Hopf Bifurcation: A Base Study, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6, 11, 1947-1975 (1996) · Zbl 1298.37038 · doi:10.1142/S0218127496001272
[5] Bashkirtseva, I.; Ryashko, L.; Schurz, H., Analysis of Noise-Induced Transitions for Hopf System with Additive and Multiplicative Random Disturbances, Chaos Solitons Fractals, 39, 1, 72-82 (2009) · Zbl 1197.37069 · doi:10.1016/j.chaos.2007.01.128
[6] Benzi, R.; Sutera, A.; Vulpiani, A., The Mechanism of Stochastic Resonance, J. Phys. A, 14, 11, 453-457 (1981) · doi:10.1088/0305-4470/14/11/006
[7] Gammaitoni, L.; Marchesoni, F.; Menichella-Saetta, E.; Santucci, S., Stochastic Resonance in Bistable Systems, Phys. Rev. Lett., 62, 4, 349-352 (1989) · Zbl 0872.70015 · doi:10.1103/PhysRevLett.62.349
[8] Anishchenko, V. S.; Neiman, A. B.; Moss, F.; Schimansky-Geier, L., Stochastic Resonance: Noise-Enhanced Order, Phys. Usp., 42, 1, 7-36 (1999) · doi:10.1070/PU1999v042n01ABEH000444
[9] Pikovsky, A.; Kurths, J., Coherence Resonance in a Noise-Driven Excitable System, Phys. Rev. Lett., 78, 5, 775-778 (1997) · Zbl 0961.70506 · doi:10.1103/PhysRevLett.78.775
[10] Lindner, B.; Schimansky-Geier, L., Analytical Approach to the Stochastic FitzHugh - Nagumo System and Coherence Resonance, Phys. Rev. E, 60, 6, 7270-7276 (1999) · doi:10.1103/PhysRevE.60.7270
[11] Neiman, A. B., Synchronizationlike Phenomena in Coupled Stochastic Bistable Systems, Phys. Rev. E, 49, 4, 3484-3488 (1994) · doi:10.1103/PhysRevE.49.3484
[12] Shulgin, B.; Neiman, A.; Anishchenko, V., Mean Switching Frequency Locking in Stochastic Bistable System Driven by a Periodic Force, Phys. Rev. Lett., 75, 23, 4157-4161 (1995) · doi:10.1103/PhysRevLett.75.4157
[13] Han, S. K.; Postnov, D. E.; Sosnovtseva, O. V.; Yim, T. G., Interacting Coherence Resonance Oscillators, Phys. Rev. Lett., 83, 9, 1771-1774 (1999) · doi:10.1103/PhysRevLett.83.1771
[14] Goldobin, D. S.; Pikovsky, A., Synchronization and Desynchronization of Self-Sustained Oscillators by Common Noise, Phys. Rev. E, 71, 4 (2005) · doi:10.1103/PhysRevE.71.045201
[15] Kuramoto, Y.; Battogtokh, D., Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators, Nonlin. Phen. Compl. Sys., 5, 4, 380-385 (2002)
[16] Abrams, D. M.; Strogatz, S. H., Chimera States for Coupled Oscillators, Phys. Rev. Lett., 93, 17 (2004) · doi:10.1103/PhysRevLett.93.174102
[17] Omelchenko, I.; Maistrenko, Yu.; Hövel, P.; Schöll, E., Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States, Phys. Rev. Lett., 106, 23 (2011) · doi:10.1103/PhysRevLett.106.234102
[18] Panaggio, M. J.; Abrams, D. M., Chimera States: Coexistence of Coherence and Incoherence in Networks of Coupled Oscillators, Nonlinearity, 28, 3, 67-87 (2015) · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[19] Bogomolov, S.; Slepnev, A.; Strelkova, G.; Schöll, E.; Anishchenko, V., Mechanisms of Appearance of Amplitude and Phase Chimera States in Ensembles of Nonlocally Coupled Chaotic Systems, Commun. Nonlinear Sci. Numer. Simul., 43, 25-36 (2017) · Zbl 1471.37040 · doi:10.1016/j.cnsns.2016.06.024
[20] Zakharova, A., Chimera Patterns in Networks: Interplay between Dynamics, Structure, Noise, and Delay (2020), Cham: Springer, Cham · Zbl 1451.93004 · doi:10.1007/978-3-030-21714-3
[21] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and Phase Cluster States in Populations of Coupled Chemical Oscillators, Nature Phys., 8, 662-665 (2012) · doi:10.1038/nphys2371
[22] Hagerstrom, A. M.; Murphy, Th. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental Observation of Chimeras in Coupled-Map Lattices, Nature Phys., 8, 658-661 (2012) · doi:10.1038/nphys2372
[23] Martens, E. A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O., Chimera States in Mechanical Oscillator Networks, Proc. Natl. Acad. Sci. USA, 110, 26, 10563-10567 (2013) · doi:10.1073/pnas.1302880110
[24] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Yu., Imperfect Chimera States for Coupled Pendula, Sci. Rep., 4 (2014) · doi:10.1038/srep06379
[25] Bansal, K.; Garcia, J. O.; Tompson, S. H.; Verstynen, T.; Vettel, J. M.; Muldoon, S. F., Cognitive Chimera States in Human Brain Networks, Sci. Adv., 5, 4 (2019) · doi:10.1126/sciadv.aau8535
[26] Majhi, S.; Bera, B. K.; Ghosh, D.; Perc, M., Chimera States in Neuronal Networks: A Review, Phys. Life Rev., 28, 100-121 (2019) · doi:10.1016/j.plrev.2018.09.003
[27] Loos, S. A. M.; Claussen, J. Ch.; Schöll, E.; Zakharova, A., Chimera Patterns under the Impact of Noise, Phys. Rev. E, 93, 1 (2016) · doi:10.1103/PhysRevE.93.012209
[28] Bukh, A. V.; Slepnev, A. V.; Anishchenko, V. S.; Vadivasova, T. E., Stability and Noise-Induced Transitions in an Ensemble of Nonlocally Coupled Chaotic Maps, Regul. Chaotic Dyn., 23, 3, 325-338 (2018) · Zbl 1408.39013 · doi:10.1134/S1560354718030073
[29] Semenov, V.; Zakharova, A.; Maistrenko, Yu.; Schöll, E., Delayed-Feedback Chimera States: Forced Multiclusters and Stochastic Resonance, Europhys. Lett., 115, 1 (2016) · doi:10.1209/0295-5075/115/10005
[30] Rybalova, E. V.; Klyushina, D. Y.; Anishchenko, V. S.; Strelkova, G. I., Impact of Noise on the Amplitude Chimera Lifetime in an Ensemble of Nonlocally Coupled Chaotic Maps, Regul. Chaotic Dyn., 24, 4, 432-445 (2019) · Zbl 1479.39021 · doi:10.1134/S1560354719040051
[31] Semenova, N.; Zakharova, A.; Anishchenko, V.; Schöll, E., Coherence-Resonance Chimeras in a Network of Excitable Elements, Phys. Rev. Lett., 117, 1 (2016) · doi:10.1103/PhysRevLett.117.014102
[32] Vadivasova, T. E.; Slepnev, A. V.; Zakharova, A., Control of Inter-Layer Synchronization by Multiplexing Noise, Chaos, 30, 9 (2020) · Zbl 1458.93240 · doi:10.1063/5.0023071
[33] Maistrenko, Yu.; Penkovsky, B.; Rosenblum, M., Solitary State at the Edge of Synchrony in Ensembles with Attractive and Repulsive Interactions, Phys. Rev. E, 89, 6 (2014) · doi:10.1103/PhysRevE.89.060901
[34] Jaros, P.; Brezetsky, S.; Levchenko, R.; Dudkowski, D.; Kapitaniak, T.; Maistrenko, Yu., Solitary States for Coupled Oscillators with Inertia, Chaos, 28, 1 (2018) · Zbl 1390.34136 · doi:10.1063/1.5019792
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.