×

Controlling chimera and solitary states by additive noise in networks of chaotic maps. (English) Zbl 1532.37072

Summary: We study numerically the spatio-temporal dynamics of ring networks of coupled discrete-time systems in the presence of additive noise. The robustness of chimera states with respect to noise perturbations is explored for two ensembles in which the individual elements are described by either logistic maps or Henon maps in the chaotic regime. The influence of noise on the behavior of solitary states is investigated for a ring of nonlocally coupled Lozi maps. Numerical simulations are performed for a set of different noise realizations and random initial conditions to provide reliable statistical data. The type of dynamics of the considered networks is quantified by using a cross-correlation coefficient. We find that there is a finite and sufficiently wide region with respect to the coupling strength and the noise intensity where the probability of observing the chimeras and solitary states is high.

MSC:

37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, Aritcle ID 174102 (2004)
[2] Anishchenko, V. S.; Neiman, A. B.; Moss, F.; Schimansky-Geier, L., Stochastic resonance: Noise-enhanced order, Phys. Uspekhi, 42, 7 (1999)
[3] Anishchenko, V. S.; Vadivasova, T. E.; Strelkova, G. I., Deterministic Nonlinear Systems (2014), Springer · Zbl 1317.37001
[4] Arnold, L., Dynamical Systems. Lecture Notes in Mathematics, 1609, Random dynamical systems, 1-43 (1995), Springer: Springer, Berlin, Heidelberg · Zbl 0834.58026
[5] Bansal, K.; Garcia, J. O.; Tompson, S. H.; Verstynen, T.; Vettel, J. M.; Muldoon, S. F., Cognitive chimera states in human brain networks, Sci. Adv., 5, Article ID eaau8535 (2019)
[6] Bashkirtseva, I.; Ryashko, L.; Schurz, H., Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances, Chaos Soliton Fract., 39, 72-82 (2009) · Zbl 1197.37069
[7] Benzi, R.; Sutera, A.; Vulpiani, A., The mechanism of stochastic resonance, J. Phys. A Math. Gen., 14, L453 (1981)
[8] Berner, R.; Polanska, A.; Schöll, E.; Yanchuk, S., Solitary states in adaptive nonlocal oscillator networks, Eur. Phys. J. Spec. Top., 229, 2183-2203 (2020)
[9] Berner, R.; Yanchuk, S.; Schöll, E., What adaptive neuronal networks teach us about power grids, Phys. Rev. E., 103, Article ID 042315 (2021)
[10] Bogomolov, S. A.; Slepnev, A. V.; Strelkova, G. I.; Schöll, E.; Anishchenko, V. S., Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems, Commun. Nonlinear Sci. Numer. Simul., 43, 25-36 (2017) · Zbl 1471.37040
[11] Bukh, A.; Rybalova, E.; Semenova, N.; Strelkova, G.; Anishchenko, V., New type of chimera and mutual synchronization of spatiotemporal structures in two coupled ensembles of nonlocally interacting chaotic maps, Chaos Interdisci. J. Nonlinear Sci., 27, Article ID 111102 (2017) · Zbl 1390.37128
[12] Bukh, A. V.; Slepnev, A. V.; Anishchenko, V. S.; Vadivasova, T. E., Stability and noise-induced transitions in an ensemble of nonlocally coupled chaotic maps, Regul. Chaotic Dyn., 23, 325-338 (2018) · Zbl 1408.39013
[13] Chacron, M. J.; Longtin, A.; Maler, L., The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons, Netw. Comput. Neural Syst., 14, 803-824 (2003)
[14] Destexhe, A.; Rudolph-Lilith, M., Neuronal Noise, Vol. 8 (2012), Springer Science & Business Media
[15] Feigenbaum, M. J., Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19, 25-52 (1978) · Zbl 0509.58037
[16] Feigenbaum, M. J., The universal metric properties of nonlinear transformations, J. Stat. Phys., 21, 669-706 (1979) · Zbl 0515.58028
[17] Franović, I.; Eydam, S.; Semenova, N.; Zakharova, A., Unbalanced clustering and solitary states in coupled excitable systems, Chaos Interdisci. J. Nonlinear Sci., 32, Article ID 011104 (2022) · Zbl 07867642
[18] Gambuzza, L. V.; Buscarino, A.; Chessari, S.; Fortuna, L.; Meucci, R.; Frasca, M., Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators, Phys. Rev. E., 90, Article ID 032905 (2014)
[19] Gammaitoni, L.; Marchesoni, F.; Menichella-Saetta, E.; Santucci, S., Stochastic resonance in bistable systems, Phys. Rev. Lett., 62, 349 (1989) · Zbl 0872.70015
[20] González-Avella, J. C.; Cosenza, M. G.; San Miguel, M., Localized coherence in two interacting populations of social agents, Phys. A Stat. Mech. Appl., 399, 24-30 (2014)
[21] Hagerstrom, A. M.; Murphy, T. E.; Roy, R.; Hövel, P.; Omelchenko, I.; Schöll, E., Experimental observation of chimeras in coupled-map lattices, Nat. Phys., 8, 658-661 (2012)
[22] Hellmann, F.; Schultz, P.; Jaros, P.; Levchenko, R.; Kapitaniak, T.; Kurths, J.; Maistrenko, Y., Network-induced multistability through lossy coupling and exotic solitary states, Nat. Commun., 11, 1-9 (2020)
[23] Henon, M., Numerical study of quadratic area-preserving mappings, Quart. Appl. Math., 27, 3, 291-312 (1969) · Zbl 0191.45403
[24] Hong, S.; Chun, Y., Efficiency and stability in a model of wireless communication networks, Soc. Choice. Welfare., 34, 441-454 (2010) · Zbl 1201.90049
[25] Horsthemke, W.; Lefever, R., Noise-Induced Transitions. Springer Series in Synergetics, 15, Noise-Induced Transitions in Physics, Chemistry, and Biology, 164-200 (1984), Springer: Springer, Berlin, Heidelberg · Zbl 0529.60085
[26] Jaros, P.; Maistrenko, Y.; Kapitaniak, T., Chimera states on the route from coherence to rotating waves, Phys. Rev. E., 91, Article ID 022907 (2015)
[27] Jaros, P.; Brezetsky, S.; Levchenko, R.; Dudkowski, D.; Kapitaniak, T.; Maistrenko, Y., Solitary states for coupled oscillators with inertia, Chaos Interdisci. J. Nonlinear Sci., 28, Article ID 011103 (2018) · Zbl 1390.34136
[28] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Y., Imperfect chimera states for coupled pendula, Sci. Rep., 4, 6379 (2014)
[29] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 380-385 (2002)
[30] Larger, L.; Penkovsky, B.; Maistrenko, Y., Virtual chimera states for delayed-feedback systems, Phys. Rev. Lett., 111, Article ID 054103 (2013)
[31] Lindner, B.; Schimansky-Geier, L., Analytical approach to the stochastic FitzHugh-Nagumo system and coherence resonance, Phys. Rev. E., 60, 7270 (1999)
[32] Loos, S. A.; Claussen, J. C.; Schöll, E.; Zakharova, A., Chimera patterns under the impact of noise, Phys. Rev. E., 93, Article ID 012209 (2016)
[33] Lozi, R., Un attracteur étrange (?) du type attracteur de Hénon, J. Phys. Colloques, 39, C5-9 (1978)
[34] Maistrenko, Y.; Penkovsky, B.; Rosenblum, M., Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions, Phys. Rev. E., 89, Article ID 060901 (2014)
[35] Majhi, S.; Bera, B. K.; Ghosh, D.; Perc, M., Chimera states in neuronal networks: A review, Phys. Life. Rev., 28, 100-121 (2019)
[36] Malchow, A. K.; Omelchenko, I.; Schöll, E.; Hövel, P., Robustness of chimera states in nonlocally coupled networks of nonidentical logistic maps, Phys. Rev. E., 98 (2018)
[37] Martens, E. A.; Thutupalli, S.; Fourriere, A.; Hallatschek, O., Chimera states in mechanical oscillator networks, Proc. Nat. Acad. Sci., 110, 10563-10567 (2013)
[38] McDonnell, M. D.; Ward, L. M., The benefits of noise in neural systems: Bridging theory and experiment, Nat. Rev. Neurosci., 12, 415-425 (2011)
[39] Menck, P. J.; Heitzig, J.; Kurths, J.; Schellnhuber, H. J., How dead ends undermine power grid stability, Nat. Commun., 5, 1-8 (2014)
[40] Mikhaylenko, M.; Ramlow, L.; Jalan, S.; Zakharova, A., Weak multiplexing in neural networks: Switching between chimera and solitary states, Chaos Interdisci. J. Nonlinear Sci., 29, Article ID 023122 (2019) · Zbl 1409.34070
[41] Motter, A. E.; Myers, S. A.; Anghel, M.; Nishikawa, T., Spontaneous synchrony in power-grid networks, Nat. Phys., 9, 191-197 (2013)
[42] Nechaev, V. A.; Rybalova, E. V.; Strelkova, G. I., Influence of parameters inhomogeneity on the existence of chimera states in a ring of nonlocally coupled maps, Izvestiya VUZ. Appl. Nonlinear Dyn., 29, 943-952 (2021)
[43] Neiman, A., Synchronizationlike phenomena in coupled stochastic bistable systems, Phys. Rev. E., 49, 3484 (1994)
[44] Nikishina, N. N.; Rybalova, E. V.; Strelkova, G. I.; Vadivasova, T. E., Destruction of cluster structures in an ensemble of chaotic maps with noise-modulated nonlocal coupling, Reg. Chaotic Dyn., 27, 242-251 (2022) · Zbl 1496.37052
[45] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett., 106, Article ID 234102 (2011)
[46] Omelchenko, I.; Riemenschneider, B.; Hövel, P.; Maistrenko, Y.; Schöll, E., Transition from spatial coherence to incoherence in coupled chaotic systems, Phys. Rev. E., 85, Article ID 026212 (2012)
[47] Omelchenko, I.; Provata, A.; Hizanidis, J.; Schöll, E.; Hövel, P., Robustness of chimera states for coupled FitzHugh-Nagumo oscillators, Phys. Rev. E., 91, Article ID 022917 (2015)
[48] Panaggio, M. J.; Abrams, D. M., Chimera states on a flat torus, Phys. Rev. Lett., 110, Article ID 094102 (2013)
[49] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, R67 (2015) · Zbl 1392.34036
[50] Pesin, Y. B., Dynamical systems with generalized hyperbolic attractors: Hyperbolic, ergodic and topological properties, Ergodic Theory Dyn. Syst., 12, 123-151 (1992) · Zbl 0774.58029
[51] Pikovsky, A. S.; Kurths, J., Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78, 775 (1997) · Zbl 0961.70506
[52] Pisarchik, A. N.; Feudel, U., Control of multistability, Phys. Rep., 540, 167-218 (2014) · Zbl 1357.34105
[53] Rosin, D. P.; Rontani, D.; Haynes, N. D.; Schöll, E.; Gauthier, D. J., Transient scaling and resurgence of chimera states in networks of Boolean phase oscillators, Phys. Rev. E., 90, Article ID 030902 (2014)
[54] Rybalova, E.; Semenova, N.; Strelkova, G.; Anishchenko, V., Transition from complete synchronization to spatio-temporal chaos in coupled chaotic systems with nonhyperbolic and hyperbolic attractors, Euro. Phys. J. Spec. Top., 226, 1857-1866 (2017)
[55] Rybalova, E.; Anishchenko, V.; Strelkova, G.; Zakharova, A., Solitary states and solitary state chimera in neural networks, Chaos Interdisci. J. Nonlinear Sci., 29, Article ID 071106 (2019) · Zbl 1420.34078
[56] Rybalova, E. V.; Klyushina, D. Y.; Anishchenko, V. S.; Strelkova, G. I., Impact of noise on the amplitude chimera lifetime in an ensemble of nonlocally coupled chaotic maps, Regul. Chaotic Dyn., 24, 432-445 (2019) · Zbl 1479.39021
[57] Rybalova, E.; Strelkova, G.; Anishchenko, V., Mechanism of realizing a solitary state chimera in a ring of nonlocally coupled chaotic maps, Chaos Soliton Fract., 115, 300-305 (2018) · Zbl 1416.39010
[58] Sawicki, J.; Omelchenko, I.; Zakharova, A.; Schöll, E., Chimera states in complex networks: Interplay of fractal topology and delay, Euro. Phys. J. Spec. Top., 226, 1883-1892 (2017)
[59] Schmidt, L.; Schönleber, K.; Krischer, K.; García-Morales, V., Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling, Chaos Interdisci. J. Nonlinear Sci., 24, Article ID 013102 (2014)
[60] Schöll, E., Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics, Euro. Phys. J. Spec. Top., 225, 891-919 (2016)
[61] Schöll, E., Chimeras in physics and biology: Synchronization and desynchronization of rhythms, Nova. Acta. Leopold., 425, 67-95 (2021)
[62] Schöll, E., Partial synchronization patterns in brain networks, Europhys. Lett., 136, Article ID 18001 (2021)
[63] Schöll, E.; Zakharova, A.; Andrzejak, R. G., Chimera States in Complex Networks (2020), Frontiers Media SA
[64] Schülen, L.; Ghosh, S.; Kachhvah, A. D.; Zakharova, A.; Jalan, S., Delay engineered solitary states in complex networks, Chaos Soliton Fract., 128, 290-296 (2019) · Zbl 1483.34092
[65] Schülen, L.; Janzen, D. A.; Medeiros, E. S.; Zakharova, A., Solitary states in multiplex neural networks: Onset and vulnerability, Chaos Soliton Fract., 145, Article ID 110670 (2021) · Zbl 1498.92016
[66] Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E., Delayed-feedback chimera states: Forced multiclusters and stochastic resonance, EPL (Euro. Lett.), 115, Article ID 10005 (2016)
[67] Semenova, N.; Zakharova, A.; Schöll, E.; Anishchenko, V., Does hyperbolicity impede emergence of chimera states in networks of nonlocally coupled chaotic oscillators?, EPL (Euro. Lett.), 112, Article ID 40002 (2015)
[68] Semenova, N.; Zakharova, A.; Anishchenko, V.; Schöll, E., Coherence-resonance chimeras in a network of excitable elements, Phys. Rev. Lett., 117, Article ID 014102 (2016)
[69] Semenova, N. I.; Rybalova, E. V.; Strelkova, G. I.; Anishchenko, V. S., ‘Coherence-incoherence’ transition in ensembles of nonlocally coupled chaotic oscillators with nonhyperbolic and hyperbolic attractors, Reg. Chaotic Dyn., 22, 148-162 (2017) · Zbl 1376.37078
[70] Semenova, N.; Strelkova, G.; Anishchenko, V.; Zakharova, A., Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators, Chaos Interdisci. J. Nonlinear Sci., 27, Article ID 061102 (2017) · Zbl 1390.37132
[71] Semenova, N.; Vadivasova, T.; Anishchenko, V., Mechanism of solitary state appearance in an ensemble of nonlocally coupled Lozi maps, Euro. Phys. J. Spec. Top., 227, 1173-1183 (2018)
[72] Shima, S.; Kuramoto, Y., Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E., 69, Article ID 036213 (2004)
[73] Shulgin, B.; Neiman, A.; Anishchenko, V., Mean switching frequency locking in stochastic bistable systems driven by a periodic force, Phys. Rev. Lett., 75, 4157 (1995)
[74] Taher, H.; Olmi, S.; Schöll, E., Enhancing power grid synchronization and stability through time-delayed feedback control, Phys. Rev. E., 100, Article ID 062306 (2019)
[75] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 662-665 (2012)
[76] Ulonska, S.; Omelchenko, I.; Zakharova, A.; Schöll, E., Chimera states in networks of Van der Pol oscillators with hierarchical connectivities, Chaos Interdisci. J. Nonlinear Sci., 26, Article ID 094825 (2016)
[77] Vadivasova, T. E.; Strelkova, G. I.; Bogomolov, S. A.; Anishchenko, V. S., Correlation analysis of the coherence-incoherence transition in a ring of nonlocally coupled logistic maps, Chaos Interdisci. J. Nonlinear Sci., 26, Article ID 093108 (2016)
[78] Wang, B.; Suzuki, H.; Aihara, K., Enhancing synchronization stability in a multi-area power grid, Sci. Rep., 6, 1-11 (2016)
[79] Wickramasinghe, M.; Kiss, I. Z., Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns, PLoS. One., 8, Article ID e80586 (2013)
[80] Wu, H.; Dhamala, M., Dynamics of Kuramoto oscillators with time-delayed positive and negative couplings, Phys. Rev. E., 98, Article ID 032221 (2018)
[81] Zakharova, A., Chimera Patterns in Networks: Interplay Between Dynamics, Structure, Noise, and Delay (2020), Springer Nature · Zbl 1451.93004
[82] Zakharova, A.; Kapeller, M.; Schöll, E., Chimera death: Symmetry breaking in dynamical networks, Phys. Rev. Lett., 112, Article ID 154101 (2014)
[83] Zakharova, A.; Loos, S.; Siebert, J.; Gjurchinovski, A.; Schöll, E., Chimera patterns: Influence of time delay and noise, IFAC-PapersOnLine, 48, 7-12 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.