×

Particle injection into a chain: decoherence versus relaxation for Hermitian and non-Hermitian dynamics. (English) Zbl 1246.81055

Summary: A model system for the injection of fermionic particles from filled source sites into an empty chain is investigated. The ensuing dynamics for Hermitian as well as for non-Hermitian time evolution, where the particles cannot return to the bath sites (quantum ratchet), is studied. A non-homogeneous hybridization between bath and chain sites permits transient currents in the chain. Non-interacting particles show decoherence in the thermodynamic limit: the average particle number and the average current density in the chain become stationary for long times, whereas the single-particle density matrix displays large fluctuations around its mean value. Using the numerical time-dependent density-matrix renormalization group (t-DMRG) method it is demonstrated, on the other hand, that sizable density-density interactions between the particles introduce relaxation which is by orders of magnitudes faster than the decoherence processes.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators

References:

[1] Gebhard, Ann. Phys. (Berlin) 523 pp 552– (2011) · Zbl 1218.82008 · doi:10.1002/andp.201100080
[2] Kinoshita, Nature 440 pp 900– (2006) · doi:10.1038/nature04693
[3] Hofferberth, Nature 449 pp 324– (2007) · doi:10.1038/nature06149
[4] Rigol, Nature 452 pp 854– (2008) · doi:10.1038/nature06838
[5] Deutsch, Phys. Rev. A 43 pp 2046– (1991) · doi:10.1103/PhysRevA.43.2046
[6] Srednicki, Phys. Rev. E 50 pp 888– (1994) · doi:10.1103/PhysRevE.50.888
[7] Gericke, Nature 4 pp 949– (2008)
[8] Strohmaier, Phys. Rev. Lett. 104 pp 080401– (2010) · doi:10.1103/PhysRevLett.104.080401
[9] Reimann, Phys. Rev. Lett. 79 pp 10– (1997) · Zbl 0944.82013 · doi:10.1103/PhysRevLett.79.10
[10] Hänggi, Ann. Phys. (Berlin) 14 pp 51– (2005) · Zbl 1160.82332 · doi:10.1002/andp.200410121
[11] Carlo, Phys. Rev. Lett. 94 pp 164101– (2005) · doi:10.1103/PhysRevLett.94.164101
[12] Hatano, Phys. Rev. Lett. 77 pp 570– (1996) · doi:10.1103/PhysRevLett.77.570
[13] Mostafazadeh, J. Math. Phys. 43 pp 205– (2002) · Zbl 1059.81070 · doi:10.1063/1.1418246
[14] Bender, Phys. Rev. Lett. 80 pp 5243– (1998) · Zbl 0947.81018 · doi:10.1103/PhysRevLett.80.5243
[15] Bender, Rep. Prog. Phys. 70 pp 947– (2007) · doi:10.1088/0034-4885/70/6/R03
[16] Kossakowski, Rep. Math. Phys. 3 pp 247– (1972) · doi:10.1016/0034-4877(72)90010-9
[17] Lindblad, Commun. Math. Phys. 48 pp 119– (1976) · Zbl 0343.47031 · doi:10.1007/BF01608499
[18] Daley, J. Stat. Mech. 4 (2004)
[19] White, Phys. Rev. Lett. 93 pp 076401– (2004) · doi:10.1103/PhysRevLett.93.076401
[20] N. Sedlmayr J. Ren J. Sirker F. Gebhard
[21] A.L. Fetter J.D. Walecka
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.