×

Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems. (English) Zbl 1307.92360

Summary: Several studies have shown that non-linear deterministic dynamical systems forced by external random components can give rise to unexpectedly regular temporal behaviors. Stochastic resonance and coherence resonance, the two best known processes of this type, have been studied in a number of physical and chemical systems. Here, we explore their possible occurrence in the dynamics of groundwater-dependent plant ecosystems. To this end, we develop two eco-hydrological models, which allow us to demonstrate that stochastic and coherence resonance may emerge in the dynamics of phreatophyte vegetation, depending on their deterministic properties and the intensity of external stochastic drivers.

MSC:

92D40 Ecology
Full Text: DOI

References:

[1] Aparicio, J.; Solari, H., Sustained oscillations in stochastic systems, Math. Biosci., 169, 15-25 (2001) · Zbl 0977.92024
[2] Azaele, S.; Pigolotti, S.; Banavar, J.; Maritan, A., Dynamical evolution of ecosystems, Nature, 444, 926-928 (2006)
[3] Benzi, R.; Sutera, A.; Vulpiani, A., The mechanism of stochastic resonance, J. Phys. A—Math. Gen., 14, L453-L457 (1981)
[4] Borg, H.; Stoneman, G. L.; Ward, C. G., The effect of logging and regeneration on groundwater, streamflow and stream salinity in the southern forest of Western Australia, J. Hydrol., 99, 253-270 (1988)
[5] Borgogno, F.; D’Odorico, P.; Laio, F.; Ridolfi, L., Effect of rainfall interannual variability on the stability and resilience of dryland plant ecosystems, Water Resour. Res., 43 (2007)
[6] Brovkin, V.; Claussen, M.; Petoukhov, V.; Ganopolski, A., On the stability of the atmosphere-vegetation system in the Sahara/Sahel region, J. Geophys. Res.—Atmos., 103, 31613-31624 (1998)
[7] Chang, M., Forest Hydrology: An Introduction to Water and Forests (2003), CRC Press: CRC Press Boca Raton, FL
[8] D’Odorico, P.; Laio, F.; Porporato, A.; Ridolfi, L.; Barbier, N., Noise-induced vegetation patterns in fire-prone Savannas, J. Geophys. Res.—Biogeosci., 112 (2007)
[9] D’Odorico, P.; Laio, F.; Ridolfi, L., Noise-induced stability in dryland plant ecosystems, Proc. Natl. Acad. Sci. USA, 102, 10819-10822 (2005)
[10] D’Odorico, P.; Laio, F.; Ridolfi, L.; Lerdau, M., Biodiversity enhancement induced by environmental noise, J. Theor. Biol., 255, 332-337 (2008) · Zbl 1400.92574
[11] D’Odorico, P.; Porporato, A., Dryland Ecohydrology (2006), Springer-Verlag
[12] Dubé, S.; Plamondon, A. P.; Rothwell, R. L., Watering up after clear-cutting on forested wetlands of the St-Lawrence Lowland, Water Resour. Res., 31, 1741-1750 (1995)
[13] Elmore, A.; Manning, S.; Mustard, J.; Craine, J., Decline in alkali meadow vegetation cover in California: the effects of groundwater extraction and drought, J. Appl. Ecol., 43, 770-779 (2006)
[14] Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F., Stochastic resonance, Rev. Mod. Phys., 70, 223-287 (1998)
[15] Gammaitoni, L.; Marchesoni, F.; Menichella-Saetta, E.; Santucci, S., Stochastic resonance in bistable systems, Phys. Rev. Lett., 62, 349-352 (1989) · Zbl 0872.70015
[16] Garcia-Ojalvo, J.; Sancho, J. M., Noise in Spatially Extended Systems (1999), Springer-Verlag: Springer-Verlag New York · Zbl 0938.60002
[17] Gardiner, C. W., Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences (1996), Springer-Verlag · Zbl 0862.60050
[18] Holling, C. S., Resilience and stability of ecological systems, Annu. Rev. Ecol. Syst., 4, 1-23 (1973)
[19] Horsthemke, W.; Lefever, R., Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (2007), Springer-Verlag: Springer-Verlag Berlin · Zbl 0529.60085
[20] Hughes, A.; Byrnes, J.; Kimbro, D.; Stachowicz, J., Reciprocal relationships and potential feedbacks between biodiversity and disturbance, Ecol. Lett., 10, 849-864 (2007)
[21] Hughes, F. M.R., Floodplain biogeomorphology, Prog. Phys. Geogr., 21, 501-529 (1997)
[22] Kong, W.; Sun, O.; Xu, W.; Chen, Y., Changes in vegetation and landscape patterns with altered river water-flow in arid west China, J. Arid Environ., 73, 306-313 (2009)
[23] Kuske, R.; Greenwood, P.; Gordilla, L., Sustained oscillations via coherence resonance in sir, J. Theor. Biol., 245, 459-469 (2007) · Zbl 1451.92296
[24] Lai, Y.; Liu, Y., Noise promotes species diversity in nature, Phys. Rev. Lett., 94, 038102 (2005)
[25] Laio, F.; Porporato, A.; Ridolfi, L.; Rodriguez-Iturbe, I., Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress—II. Probabilistic soil moisture dynamics, Adv. Water Resour., 24, 707-723 (2001)
[26] LeMaitre, D. C.; Scott, D. F.; Colvin, C., A review of information on interactions between vegetation and groundwater, Water SA, 25, 137-152 (1999)
[27] Lindner, B.; Garcia-Ojalvo, J.; Neiman, A.; Schimansky-Geier, L., Effects of noise in excitable systems, Phys. Rep.—Rev. Sec. Phys. Lett., 392, 321-424 (2004)
[28] Malanson, G. P., Riparian Landscapes (1993), Cambridge University Press: Cambridge University Press Cambridge
[29] Mitsch, W. J.; Gosselink, J. G., Wetlands (2000), Wiley: Wiley New York
[30] Moreno-Casasola, P.; Vazquez, G., The relationship between vegetation dynamics and water table in tropical dune slacks, J. Veg. Sci., 10, 515-524 (1999)
[31] Munoz-Reinoso, J.; de Castro, F., Application of a statistical water-table model reveals connections between dunes and vegetation at donana, J. Arid Environ., 60, 663-679 (2005)
[32] Naumburg, E.; Mata-Gonzalez, R.; Hunter, R.; Mclendon, T.; Martin, D., Phreatophytic vegetation and groundwater fluctuations: a review of current research and application of ecosystems response modeling with an emphasis on great basin vegetation, Environ. Manage., 35, 726-740 (2005)
[33] Noy-Meir, I., Desert ecosystems: environment and producers, Annu. Rev. Ecol. Syst., 4, 25-51 (1973)
[34] Noy-Meir, I., Stability of grazing systems: an application of predator-prey graphs, J. Ecol., 63, 459-481 (1975)
[35] Peck, A. J.; Williamson, D. R., Effects of forest clearings on groundwater, J. Hydrol., 94, 47-65 (1987)
[36] Phipps, R. L., Simulation of wetland forest dynamics, Ecol. Modell., 7, 257-288 (1979)
[37] Pikovsky, A. S., Synchronization and stochastization of nonlinear oscillations by external noise, (Sagdeev, R. Z., Nonlinear and Turbulent Processes in Physics (1984), Harwood Academic Publishers), 1601-1604
[38] Pikovsky, A. S.; Kurths, J., Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett., 78, 775-778 (1997) · Zbl 0961.70506
[39] Polyak, I., Observed versus simulated second-moment climate statistics in GCM verification problems, J. Atmos. Sci., 53, 677-694 (1996)
[40] Reimann, R., Brownian motors: noisy transport far from equilibrium, Phys. Rep., 361, 57-265 (2002) · Zbl 1001.82097
[41] Ridolfi, L.; D’Odorico, P.; Laio, F., Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems, Water Resour. Res., 42 (2006)
[42] Ridolfi, L.; D’Odorico, P.; Laio, F., Vegetation dynamics induced by phreatophyte-aquifer interactions, J. Theor. Biol., 248, 301-310 (2007) · Zbl 1451.92335
[43] Ridolfi, L.; D’Odorico, P.; Laio, F., Noise-Induced Phenomena in the Environmental Sciences (2011), Cambridge University Press: Cambridge University Press New York · Zbl 1283.60073
[44] Riekerk, H., Influence of silvicultural practices on the hydrology of pine flatwoods in Florida, Water Resour. Res., 25, 713-719 (1989)
[45] Roy, V.; Ruel, J. C.; Plamondon, A. P., Establishment, growth and survival of natural regeneration after clearcutting and drainage on forested wetlands, For. Ecol. Manage., 129, 253-267 (2000)
[46] Sagues, F.; Sancho, J. M.; Garcia-Ojalvo, J., Spatiotemporal order out of noise, Rev. Mod. Phys., 79, 829-882 (2007)
[47] Scheffer, M.; Carpenter, S.; Foley, J. A.; Folke, C.; Walker, B., Catastrophic shifts in ecosystems, Nature, 413, 591-596 (2001)
[48] Schroder, A.; Persson, L.; de Roos, A. M., Direct experimental evidence for alternative stable states: a review, Oikos, 110, 3-19 (2005)
[49] Sieber, M.; Malchow, H.; Schimansky-Geier, L., Constructive effects of environmental noise in an excitable prey-predator plankton system with infected prey, Ecol. Complexity, 4, 223-233 (2007)
[50] Stephens, P.; Sutherland, W.; Freckleton, R., What is the allee effect?, Oikos, 87, 185-190 (1999)
[51] Tsoularis, A.; Wallace, J., Analysis of logistic growth models, Math. Biosci., 179, 21-55 (2002) · Zbl 0993.92028
[52] Walker, B. H.; Ludwig, D.; Holling, C. S.; Peterman, R. M., Stability of semi-arid Savanna grazing systems, J. Ecol., 69, 473-498 (1981)
[53] Wellens, T.; Shatokhin, V.; Buchleitner, A., Stochastic resonance, Rep. Prog. Phys., 67, 45-105 (2004)
[54] Wright, J. M.; Chambers, J. C., Restoring riparian meadows currently dominated by Artemisa using alternative state concepts—above-ground vegetation response, Appl. Veg. Sci., 5, 237-246 (2002)
[55] Zeng, N.; Neelin, J. D.; Lau, K. M.; Tucker, C. J., Enhancement of interdecadal climate variability in the Sahel by vegetation interaction, Science, 286, 1537-1540 (1999)
[56] Zeng, X. D.; Shen, S. S.P.; Zeng, X. B.; Dickinson, R. E., Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation, Geophys. Res. Lett., 31 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.