×

Bistability and the dynamics of periodically forced sensory neurons. (English) Zbl 0800.92073


MSC:

92C20 Neural biology
Full Text: DOI

References:

[1] Bulsara A, Jacobs E, Zhou T, Moss F, Kiss L (1991) Stochastic resonance in a single neuron model: theory and analog simulation. J Theor Biol 154:531–555 · doi:10.1016/S0022-5193(05)80396-0
[2] Calvin W, Stevens CF (1968) Synaptic noise and other sources of randomness in motorneuron interspike interval. J Neurophysiol 31:574–587
[3] Chialvo DR, Apkarian V (1993) Modulated noisy biological dynamics: three examples. J Stat Phys 70:375–391 · Zbl 1002.92516 · doi:10.1007/BF01053974
[4] Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976
[5] Douglass JK, Moss F, Longtin A (1993) Statistical and dynamical interpretation of ISIH data from periodically stimulated sensory neurons. In: Hanson SJ, Cowan J, Giles L (eds) Proceedings of the fifth neural information processing systems conference, Denver. Morgan Kaufmann, San Francisco
[6] Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S (1989) Stochastic resonance in bistable systems. Phys Rev Lett 62:349–352 · Zbl 0872.70015 · doi:10.1103/PhysRevLett.62.349
[7] Gardiner C (1983) Handbook of stochastic methods. Springer, Berlin Heidelberg New York · Zbl 0515.60002
[8] Gerstein GL, Mandelbrot B (1964) Random walk models for the spike activity of a single neuron. Biophys J 4:41–68 · doi:10.1016/S0006-3495(64)86768-0
[9] Glass L, Graves C, Petrillo GA, Mackey MC (1980) Unstable dynamics of a periodically driven oscillator in the presence of noise. J Theor Biol 86:455–475 · doi:10.1016/0022-5193(80)90345-8
[10] Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci USA 79:2554–2558 · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[11] Johnson DH (1974) The response of single auditory-nerve fibers in the cat to single tones: synchrony and average discharge rate. PhD thesis, Massachusetts Institute of Technology, Cambridge, Mass
[12] Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J. Acoust Soc Am 68:1115–1122 · doi:10.1121/1.384982
[13] Jung P, Hanggi P, Marchesoni F (1989) Colored-noise-driven bistable systems. Phys Rev A 40:5447–5450 · doi:10.1103/PhysRevA.40.5447
[14] Kiang NYS (1984) Peripheral neural processing of auditory information. In: Handbook of physiology, Vol III. Sensory processes. American Physiological Society, Part 2, Chap 15, pp 639–674
[15] Landahl H, McCulloch WS, Pitts W (1943) A statistical consequence of the logical calculus of nervous nets. Bull Math Biophys 5:135–137 · Zbl 0063.03434 · doi:10.1007/BF02478260
[16] Longtin A (1993a) Stochastic resonance in neuron models. J Stat Phys 70:309–327 · Zbl 1002.92503 · doi:10.1007/BF01053970
[17] Longtin A (1993b) Nonlinear forecasting of spike trains from sensory neurons. Int J Bifurc Chaos (in press) · Zbl 0875.92026
[18] Longtin A, Bulsara A, Moss F (1991) Time interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys Rev Lett 67:656–659 · doi:10.1103/PhysRevLett.67.656
[19] Lowen SB, Teich MC (1992) Auditory-nerve action potentials form a nonrenewal point process over short as well as long time scales. J Acoust Soc Am 92:803–806 · doi:10.1121/1.403950
[20] Lyon RF (1990) Automatic gain control in cochlear mechanics. In: The mechanics and biophysics of hearing. (Lecture notes in biomathematics, Vol 87) pp 395–402
[21] Mannella R, Palleschi V (1989) Fast and precise algorithm for computer simulation of stochastic differential equations. Phys Rev A 40:3381–3386 · doi:10.1103/PhysRevA.40.3381
[22] McNamara B, Wiesenfeld K (1989) Theory of stochastic resonance. Phys Rev A 39:4854–4875 · doi:10.1103/PhysRevA.39.4854
[23] Ogawa T, Bishop PO, Levick WR (1966) Temporal characteristics of responses to photic stimulation by single ganglion cells in the unopened eye of the cat. J Neurophysiol 6:2–30
[24] Rinzel J, Ermentrout B (1989) Analysis of neural excitability and oscillations. In: Koch C, Segev I (eds) Methods in neuronal modeling. MIT Press, Cambridge, Mass
[25] Rose J, Brugge J, Anderson D, Hind J (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793
[26] Russell U, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284:261–290
[27] Siebert WM (1965) Some implications of the stochastic behavior of primary auditory neurons. Kybernetik 2:206–215 · doi:10.1007/BF00306416
[28] Siegel R (1990) Nonlinear dynamical system theory and primary visual cortical processing. Physica 42 D:385–395
[29] Talbot W, Darian-Smith I, Kornhuber H, Mountcastle V (1968) The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents for the monkey hand. J Neurophysiol 31:301–334
[30] Treutlein H, Schulten K (1985) Noise induced limit cycles of the Bonhoeffer-Van der Pol model of neural pulses. Ber Bunsenges Phys Chem 89:710–718
[31] Tuckwell HC (1989) Stochastic processes in the neurosciences. SIAM, Philadelphia · Zbl 0675.92001
[32] Weiss TF (1966) A model of the peripheral auditory system. Kybernetik 3:153–175 · doi:10.1007/BF00290252
[33] Zheng W (1991) Square-wave-driven stochastic resonance. Phys Rev A 44:6443–6447 · doi:10.1103/PhysRevA.44.6443
[34] Zhou T, Moss F, Jung P (1990) Escape-time distributions of a periodically modulated bistable system with noise. Phys Rev A 42:3161–3169 · doi:10.1103/PhysRevA.42.3161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.