×

Quantum pure noise-induced transitions: a truly nonclassical limit cycle sensitive to number parity. (English) Zbl 07905056

Summary: It is universally accepted that noise may bring order to complex nonequilibrium systems. Most strikingly, entirely new states not seen in the noiseless system can be induced purely by including multiplicative noise – an effect known as pure noise-induced transitions. It was first observed in superfluids in the 1980s. Recent results in complex nonequilibrium systems have also shown how new collective states emerge from such pure noise-induced transitions, such as the foraging behavior of insect colonies, and schooling in fish. Here we report such effects of noise in a quantum-mechanical system without a classical limit. We use a minimal model of a nonlinearly damped oscillator in a fluctuating environment that is analytically tractable, and whose microscopic physics can be understood. When multiplicative environmental noise is included, the system is seen to transition to a limit-cycle state. The noise-induced quantum limit cycle also exhibits other genuinely nonclassical traits, such as Wigner negativity and number-parity sensitive circulation in phase space. Such quantum limit cycles are also conservative. These properties are in stark contrast to those of a widely used limit cycle in the literature, which is dissipative and loses all Wigner negativity. Our results establish the existence of a pure noise-induced transition that is nonclassical and unique to open quantum systems. They illustrate a fundamental difference between quantum and classical noise.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence

References:

[1] A. Sutera, On stochastic perturbation and long-term climate behaviour, Q. J. R. Meteorol. Soc. 107, 137 (2007), doi:10.1002/qj.49710745109. · doi:10.1002/qj.49710745109
[2] R. Benzi, G. Parisi, A. Sutera and A. Vulpiani, Stochastic resonance in climatic change, Tellus 34, 10 (1982), doi:10.3402/tellusa.v34i1.10782. · doi:10.3402/tellusa.v34i1.10782
[3] R. Benzi, G. Parisi, A. Sutera and A. Vulpiani, A theory of stochastic resonance in climatic change, SIAM J. Appl. Math. 43, 565 (1983), doi:10.1137/0143037. · Zbl 0509.60059 · doi:10.1137/0143037
[4] H. von Storch, J.-S. von Storch and P. Müller, Noise in the climate system -Ubiqui-tous, constitutive and concealing, in Mathematics unlimited -2001 and beyond, Springer, Berlin, Heidelberg, Germany, ISBN 9783642631146 (2001), doi:10.1007/978-3-642-56478-9_62. · Zbl 1047.86502 · doi:10.1007/978-3-642-56478-9_62
[5] J. M. Thompson and J. Sieber, Predicting climate tipping as a noisy bifurcation: A review, Int. J. Bifurcation Chaos 21, 399 (2011), doi:10.1142/S0218127411028519. · Zbl 1210.86007 · doi:10.1142/S0218127411028519
[6] M. Ghil and V. Lucarini, The physics of climate variability and climate change, Rev. Mod. Phys. 92, 035002 (2020), doi:10.1103/RevModPhys.92.035002. · doi:10.1103/RevModPhys.92.035002
[7] J. Hasty, J. Pradines, M. Dolnik and J. J. Collins, Noise-based switches and amplifiers for gene expression, Proc. Natl. Acad. Sci. 97, 2075 (2000), doi:10.1073/pnas.040411297. · doi:10.1073/pnas.040411297
[8] M. Thattai and A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. 98, 8614 (2001), doi:10.1073/pnas.151588598. · doi:10.1073/pnas.151588598
[9] R. Steuer, C. Zhou and J. Kurths, Constructive effects of fluctuations in genetic and biochemical regulatory systems, Biosystems 72, 241 (2003), doi:10.1016/j.biosystems.2003.07.001. · doi:10.1016/j.biosystems.2003.07.001
[10] N. Barkai and S. Leibler, Circadian clocks limited by noise, Nature 403, 267 (2000), doi:10.1038/35002258. · doi:10.1038/35002258
[11] D. Gonze and A. Goldbeter, Circadian rhythms and molecular noise, Chaos 16, 026110 (2006), doi:10.1063/1.2211767. · Zbl 1152.92312 · doi:10.1063/1.2211767
[12] Q. Li and X. Lang, Internal noise-sustained circadian rhythms in a drosophila model, Bio-phys. J. 94, 1983 (2008), doi:10.1529/biophysj.107.109611. · doi:10.1529/biophysj.107.109611
[13] G. A. Cecchi, M. Sigman, J.-M. Alonso, L. Martínez, D. R. Chialvo and M. O. Mag-nasco, Noise in neurons is message dependent, Proc. Natl. Acad. Sci. 97, 5557 (2000), doi:10.1073/pnas.100113597. · doi:10.1073/pnas.100113597
[14] A. A. Faisal, L. P. J. Selen and D. M. Wolpert, Noise in the nervous system, Nat. Rev. Neurosci. 9, 292 (2008), doi:10.1038/nrn2258. · doi:10.1038/nrn2258
[15] R. May, Stability and complexity in model ecosystems, Princeton University Press, Prince-ton, USA, ISBN 9780691088617 (2001). · Zbl 1044.92047
[16] O. N. Bjørnstad and B. T. Grenfell, Noisy clockwork: Time series analysis of population fluctuations in animals, Science 293, 638 (2001), doi:10.1126/science.1062226. · doi:10.1126/science.1062226
[17] A. Fiasconaro, D. Valenti and B. Spagnolo, Noise in ecosystems: A short review, MBE 1, 185 (2004), doi:10.3934/mbe.2004.1.185. · Zbl 1086.92055 · doi:10.3934/mbe.2004.1.185
[18] T. G. Benton and A. P. Beckerman, Population dynamics in a noisy world: Lessons from a mite experimental system, Adv. Ecol. Res. 37, 143 (2005), doi:10.1016/S0065-2504(04)37005-4. · doi:10.1016/S0065-2504(04)37005-4
[19] P. D’Odorico, F. Laio, L. Ridolfi and M. T. Lerdau, Biodiversity enhancement induced by environmental noise, J. Theor. Biol. 255, 332 (2008), doi:10.1016/j.jtbi.2008.09.007. · Zbl 1400.92574 · doi:10.1016/j.jtbi.2008.09.007
[20] L. Ridolfi, P. D’Odorico and F. Laio, Noise-induced phenomena in the environmental sciences, Cambridge University Press, Cambridge, UK, ISBN 9780511984730 (2011), doi:10.1017/CBO9780511984730. · Zbl 1283.60073 · doi:10.1017/CBO9780511984730
[21] C. Boettiger, From noise to knowledge: How randomness generates novel phenomena and reveals information, Ecol. Lett. 21, 1255 (2018), doi:10.1111/ele.13085. · doi:10.1111/ele.13085
[22] A. Czirók and T. Vicsek, Collective behavior of interacting self-propelled particles, Phys. A: Stat. Mech. Appl. 281, 17 (2000), doi:10.1016/S0378-4371(00)00013-3. · Zbl 0986.92007 · doi:10.1016/S0378-4371(00)00013-3
[23] K. Klemm, V. M. Eguíluz, R. Toral and M. San Miguel, Global culture: A noise-induced transition in finite systems, Phys. Rev. E 67, 045101 (2003), doi:10.1103/PhysRevE.67.045101. · doi:10.1103/PhysRevE.67.045101
[24] C. A. Yates, R. Erban, C. Escudero, I. D. Couzin, J. Buhl, I. G. Kevrekidis, P. K. Maini and D. J. T. Sumpterh, Inherent noise can facilitate coherence in collective swarm motion, Proc. Natl. Acad. Sci. USA 106, 5464 (2009), doi:10.1073/pnas.0811195106. · doi:10.1073/pnas.0811195106
[25] C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81, 591 (2009), doi:10.1103/RevModPhys.81.591. · doi:10.1103/RevModPhys.81.591
[26] S. Stern and G. Livan, The impact of noise and topology on opinion dynamics in social networks, R. Soc. Open Sci. 8, 201943 (2021), doi:10.1098/rsos.201943. · doi:10.1098/rsos.201943
[27] A. Schenzle and H. Brand, Multiplicative stochastic processes in statistical physics, Phys. Rev. A 20, 1628 (1979), doi:10.1103/PhysRevA.20.1628. · doi:10.1103/PhysRevA.20.1628
[28] F. Moss and P. V. E. McClintock eds., Noise in nonlinear dynamical systems, Cambridge University Press, Cambridge, UK, ISBN 9780511897818 (1989), doi:10.1017/CBO9780511897818. · doi:10.1017/CBO9780511897818
[29] P. Landa, Changes in the dynamical behavior of nonlinear systems induced by noise, Phys. Rep. 323, 1 (2000), doi:10.1016/S0370-1573(99)00043-5. · doi:10.1016/S0370-1573(99)00043-5
[30] H. S. Wio and K. Lindenberg, Noise Induced Phenomena: A Sampler, AIP Conf. Proc. 658, 1 (2003), doi:10.1063/1.1566651. · doi:10.1063/1.1566651
[31] M. A. Muñoz, Multiplicative noise in non-equilibrium phase transitions: A tutorial, (arXiv preprint) doi:10.48550/arXiv.cond-mat/0303650. · doi:10.48550/arXiv.cond-mat/0303650
[32] P. Sura, M. Newman, C. Penland and P. Sardeshmukh, Multiplicative noise and non-Gaussianity: A paradigm for atmospheric regimes?, J. Atmos. Sci. 62, 1391 (2005), doi:10.1175/JAS3408.1. · doi:10.1175/JAS3408.1
[33] R. A. Ibrahim, Excitation-induced stability and phase transition: A review, J. Vib. Control 12, 1093 (2006), doi:10.1177/1077546306069912. · Zbl 1182.93001 · doi:10.1177/1077546306069912
[34] R. Kubo, A stochastic theory of line-shape and relaxation, in Advances in chemical physics: Stochastic processes in chemical physics, vol. 15, ISBN 9780471789673 (1969), doi:10.1002/9780470143605.ch6. · doi:10.1002/9780470143605.ch6
[35] G. Volpe and J. Wehr, Effective drifts in dynamical systems with multiplicative noise: A review of recent progress, Rep. Prog. Phys. 79, 053901 (2016), doi:10.1088/0034-4885/79/5/053901. · doi:10.1088/0034-4885/79/5/053901
[36] J. Jhawar and V. Guttal, Noise-induced effects in collective dynamics and inferring lo-cal interactions from data, Philos. Trans. R. Soc. B: Biol. Sci. 375, 20190381 (2020), doi:10.1098/rstb.2019.0381. · doi:10.1098/rstb.2019.0381
[37] H. Haken, Cooperative phenomena in systems far from thermal equilibrium and in non-physical systems, Rev. Mod. Phys. 47, 67 (1975), doi:10.1103/RevModPhys.47.67. · doi:10.1103/RevModPhys.47.67
[38] K. Matsumoto and I. Tsuda, Noise-induced order, J. Stat. Phys. 31, 87 (1983), doi:10.1007/BF01010923. · doi:10.1007/BF01010923
[39] M. Yoshimoto, H. Shirahama and S. Kurosawa, Noise-induced order in the chaos of the Belousov-Zhabotinsky reaction, J. Chem. Phys. 129, 014508 (2008), doi:10.1063/1.2946710. · doi:10.1063/1.2946710
[40] F. Sagués, J. M. Sancho and J. García-Ojalvo, Spatiotemporal order out of noise, Rev. Mod. Phys. 79, 829 (2007), doi:10.1103/RevModPhys.79.829. · doi:10.1103/RevModPhys.79.829
[41] W. Horsthemke and M. Malek-Mansour, The influence of external noise on non-equilibrium phase transitions, Z. Phys. B 24, 307 (1976), doi:10.1007/BF01360902. · doi:10.1007/BF01360902
[42] W. Horsthemke and R. Lefever, Phase transition induced by external noise, Phys. Lett. A 64, 19 (1977), doi:10.1016/0375-9601(77)90512-6. · doi:10.1016/0375-9601(77)90512-6
[43] L. Arnold, W. Horsthemke and R. Lefever, White and coloured external noise and transition phenomena in nonlinear systems, Z. Phys. B 29, 367 (1978), doi:10.1007/BF01324036. · doi:10.1007/BF01324036
[44] W. Horsthemke and R. Lefever, Noise-induced transitions, Springer, Berlin, Heidelberg, Germany, ISBN 9783540113591 (2006), doi:10.1007/3-540-36852-3. · Zbl 0529.60085 · doi:10.1007/3-540-36852-3
[45] C. Van den Broeck, J. M. R. Parrondo and R. Toral, Noise-induced nonequilibrium phase transition, Phys. Rev. Lett. 73, 3395 (1994), doi:10.1103/PhysRevLett.73.3395. · doi:10.1103/PhysRevLett.73.3395
[46] R. Kawai, X. Sailer, L. Schimansky-Geier and C. Van den Broeck, Macroscopic limit cycle via pure noise-induced phase transitions, Phys. Rev. E 69, 051104 (2004), doi:10.1103/PhysRevE.69.051104. · doi:10.1103/PhysRevE.69.051104
[47] R. Toral, Noise-induced transitions vs. noise-induced phase transitions, AIP Conf. Proc. 1332, 145 (2011), doi:10.1063/1.3569493. · Zbl 0888.60099 · doi:10.1063/1.3569493
[48] R. Lefever and J. W. Turner, Sensitivity of a Hopf bifurcation to multiplicative colored noise, Phys. Rev. Lett. 56, 1631 (1986), doi:10.1103/PhysRevLett.56.1631. · doi:10.1103/PhysRevLett.56.1631
[49] L. Fronzoni, R. Mannella, P. V. E. McClintock and F. Moss, Postponement of Hopf bifurcations by multiplicative colored noise, Phys. Rev. A 36, 834 (1987), doi:10.1103/PhysRevA.36.834. · doi:10.1103/PhysRevA.36.834
[50] N. Sri Namachchivaya, Hopf bifurcation in the presence of both parametric and external stochastic excitations, J. Appl. Mech. 55, 923 (1988), doi:10.1115/1.3173743. · Zbl 0671.93055 · doi:10.1115/1.3173743
[51] I. Bashkirtseva, L. Ryashko and H. Schurz, Analysis of noise-induced transitions for Hopf system with additive and multiplicative random disturbances, Chaos Solit. Fractals 39, 72 (2009), doi:10.1016/j.chaos.2007.01.128. · Zbl 1197.37069 · doi:10.1016/j.chaos.2007.01.128
[52] B. C. Nolting and K. C. Abbott, Balls, cups, and quasi-potentials: Quantifying stability in stochastic systems, Ecology 97, 850 (2016), doi:10.1890/15-1047.1. · doi:10.1890/15-1047.1
[53] J. T. Tough, Using superfluid turbulence to study noise-induced transitions, Jpn. J. Appl. Phys. 26, 75 (1987), doi:10.7567/JJAPS.26S3.75. · doi:10.7567/JJAPS.26S3.75
[54] D. Griswold and J. T. Tough, Noise-induced bistability at the T-I-T-II transition in super-fluid He II, Phys. Rev. A 36, 1360 (1987), doi:10.1103/PhysRevA.36.1360. · doi:10.1103/PhysRevA.36.1360
[55] M. Samoilov, S. Plyasunov and A. P. Arkin, Stochastic amplification and signaling in en-zymatic futile cycles through noise-induced bistability with oscillations, Proc. Natl. Acad. Sci. 102, 2310 (2005), doi:10.1073/pnas.0406841102. · doi:10.1073/pnas.0406841102
[56] T. Biancalani, L. Dyson and A. J. McKane, Noise-induced bistable states and their mean switching time in foraging colonies, Phys. Rev. Lett. 112, 038101 (2014), doi:10.1103/PhysRevLett.112.038101. · doi:10.1103/PhysRevLett.112.038101
[57] J. Jhawar, R. G. Morris, U. R. Amith-Kumar, M. D. Raj, T. Rogers, H. Rajendran and V. Guttal, Noise-induced schooling of fish, Nat. Phys. 16, 488 (2020), doi:10.1038/s41567-020-0787-y. · doi:10.1038/s41567-020-0787-y
[58] A. Chia, M. Hajdušek, R. Nair, R. Fazio, L. C. Kwek and V. Vedral, Phase-preserving linear amplifiers not simulable by the parametric amplifier, Phys. Rev. Lett. 125, 163603 (2020), doi:10.1103/PhysRevLett.125.163603. · doi:10.1103/PhysRevLett.125.163603
[59] H.-P. Breuer and F. Petruccione, The theory of open quantum systems, Oxford University PressOxford, Oxford, UK, ISBN 0199213909 (2007), doi:10.1093/acprof:oso/9780199213900.001.0001. · Zbl 1223.81001 · doi:10.1093/acprof:oso/9780199213900.001.0001
[60] M. A. Schlosshauer, Decoherence: And the quantum-to-classical transition, Springer, Berlin, Heidelberg, Germany, ISBN 9783540357759 (2007), doi:10.1007/978-3-540-35775-9. · doi:10.1007/978-3-540-35775-9
[61] T. E. Lee and H. R. Sadeghpour, Quantum synchronization of quantum van der Pol oscillators with trapped ions, Phys. Rev. Lett. 111, 234101 (2013), doi:10.1103/PhysRevLett.111.234101. · doi:10.1103/PhysRevLett.111.234101
[62] S. Walter, A. Nunnenkamp and C. Bruder, Quantum synchronization of a driven self-sustained oscillator, Phys. Rev. Lett. 112, 094102 (2014), doi:10.1103/PhysRevLett.112.094102. · doi:10.1103/PhysRevLett.112.094102
[63] D. Yu, M. Xie, Y. Cheng and B. Fan, Noise-induced temporal regularity and signal amplifi-cation in an optomechanical system with parametric instability, Opt. Express 26, 32433 (2018), doi:10.1364/OE.26.032433. · doi:10.1364/OE.26.032433
[64] Y. Kato and H. Nakao, Quantum coherence resonance, New J. Phys. 23, 043018 (2021), doi:10.1088/1367-2630/abf1d7. · doi:10.1088/1367-2630/abf1d7
[65] H. S. Samanta, J. K. Bhattacharjee, A. Bhattacharyay and S. Chakraborty, On noise induced Poincaré-Andronov-Hopf bifurcation, Chaos 24, 043122 (2014), doi:10.1063/1.4900775. · Zbl 1361.34072 · doi:10.1063/1.4900775
[66] T. Weiss, A. Kronwald and F. Marquardt, Noise-induced transitions in optomechanical syn-chronization, New J. Phys. 18, 013043 (2016), doi:10.1088/1367-2630/18/1/013043. · Zbl 1456.92019 · doi:10.1088/1367-2630/18/1/013043
[67] H. Treutlein and K. Schulten, Noise induced limit cycles of the Bonhoeffer-van der Pol model of neural pulses, Ber. Bunsenges. Phys. Chem. 89, 710 (1985), doi:10.1002/bbpc.19850890626. · doi:10.1002/bbpc.19850890626
[68] H. Treutlein and K. Schulten, Noise-induced neural impulses, Eur. Biophys. J. 13, 355 (1986), doi:10.1007/BF00265671. · doi:10.1007/BF00265671
[69] D. Sigeti and W. Horsthemke, Pseudo-regular oscillations induced by external noise, J. Stat. Phys. 54, 1217 (1989), doi:10.1007/BF01044713. · doi:10.1007/BF01044713
[70] H. Gang, T. Ditzinger, C. Z. Ning and H. Haken, Stochastic resonance without external periodic force, Phys. Rev. Lett. 71, 807 (1993), doi:10.1103/PhysRevLett.71.807. · doi:10.1103/PhysRevLett.71.807
[71] W.-J. Rappel and S. H. Strogatz, Stochastic resonance in an autonomous system with a nonuniform limit cycle, Phys. Rev. E 50, 3249 (1994), doi:10.1103/PhysRevE.50.3249. · doi:10.1103/PhysRevE.50.3249
[72] T. Ditzinger, C. Z. Ning and G. Hu, Resonancelike responses of autonomous nonlinear systems to white noise, Phys. Rev. E 50, 3508 (1994), doi:10.1103/PhysRevE.50.3508. · doi:10.1103/PhysRevE.50.3508
[73] A. Longtin, Autonomous stochastic resonance in bursting neurons, Phys. Rev. E 55, 868 (1997), doi:10.1103/PhysRevE.55.868. · doi:10.1103/PhysRevE.55.868
[74] A. S. Pikovsky and J. Kurths, Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett. 78, 775 (1997), doi:10.1103/PhysRevLett.78.775. · Zbl 0961.70506 · doi:10.1103/PhysRevLett.78.775
[75] S.-G. Lee, A. Neiman and S. Kim, Coherence resonance in a Hodgkin-Huxley neuron, Phys. Rev. E 57, 3292 (1998), doi:10.1103/PhysRevE.57.3292. · doi:10.1103/PhysRevE.57.3292
[76] R. Benzi, A. Sutera and A. Vulpiani, The mechanism of stochastic resonance, J. Phys. A: Math. Gen. 14, L453 (1981), doi:10.1088/0305-4470/14/11/006. · doi:10.1088/0305-4470/14/11/006
[77] S. Fauve and F. Heslot, Stochastic resonance in a bistable system, Phys. Lett. A 97, 5 (1983), doi:10.1016/0375-9601(83)90086-5. · doi:10.1016/0375-9601(83)90086-5
[78] L. Gammaitoni, F. Marchesoni, E. Menichella-Saetta and S. Santucci, Stochastic resonance in bistable systems, Phys. Rev. Lett. 62, 349 (1989), doi:10.1103/PhysRevLett.62.349. · Zbl 0872.70015 · doi:10.1103/PhysRevLett.62.349
[79] B. McNamara and K. Wiesenfeld, Theory of stochastic resonance, Phys. Rev. A 39, 4854 (1989), doi:10.1103/PhysRevA.39.4854. · doi:10.1103/PhysRevA.39.4854
[80] L. Gammaitoni, F. Marchesoni and S. Santucci, Stochastic resonance as a Bona Fide res-onance, Phys. Rev. Lett. 74, 1052 (1995), doi:10.1103/PhysRevLett.74.1052. · doi:10.1103/PhysRevLett.74.1052
[81] H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284 (1940), doi:10.1016/S0031-8914(40)90098-2. · Zbl 0061.46405 · doi:10.1016/S0031-8914(40)90098-2
[82] P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: Fifty years after Kramers, Rev. Mod. Phys. 62, 251 (1990), doi:10.1103/RevModPhys.62.251. · doi:10.1103/RevModPhys.62.251
[83] B. Lindner, Effects of noise in excitable systems, Phys. Rep. 392, 321 (2004), doi:10.1016/j.physrep.2003.10.015. · doi:10.1016/j.physrep.2003.10.015
[84] E. Schöll and H. G. Schuster, Handbook of chaos control, Wiley, Hoboken, USA, ISBN 9783527622313 (2007), doi:10.1002/9783527622313. · Zbl 1130.93001 · doi:10.1002/9783527622313
[85] A. Balanov, N. Janson, D. Postnov and O. Sosnovtseva, Synchronization: From simple to complex, Springer, Berlin, Heidelberg, Germany, ISBN 9783540721284 (2009). · Zbl 1163.34001
[86] E. Forgoston and R. O. Moore, A primer on noise-induced transitions in applied dynamical systems, SIAM Rev. 60, 969 (2018), doi:10.1137/17M1142028. · Zbl 1408.37089 · doi:10.1137/17M1142028
[87] P. K. Ghosh, D. Barik and D. S. Ray, Noise-induced transition in a quantum system, Phys. Lett. A 342, 12 (2005), doi:10.1016/j.physleta.2005.04.097. · doi:10.1016/j.physleta.2005.04.097
[88] P. Lambropoulos, C. Kikuchi and R. K. Osborn, Coherence and two-photon absorption, Phys. Rev. 144, 1081 (1966), doi:10.1103/PhysRev.144.1081. · doi:10.1103/PhysRev.144.1081
[89] P. Lambropoulos, Quantum statistics of a two-photon quantum amplifier, Phys. Rev. 156, 286 (1967), doi:10.1103/PhysRev.156.286. · Zbl 0167.10002 · doi:10.1103/PhysRev.156.286
[90] H. D. Simaan and R. Loudon, Quantum statistics of single-beam two-photon absorption, J. Phys. A: Math. Gen. 8, 539 (1975), doi:10.1088/0305-4470/8/4/016. · doi:10.1088/0305-4470/8/4/016
[91] K. J. McNeil and D. F. Walls, A master equation approach to nonlinear optics, J. Phys. A: Math. Nucl. Gen. 7, 617 (1974), doi:10.1088/0305-4470/7/5/012. · doi:10.1088/0305-4470/7/5/012
[92] S. Chaturvedi, P. Drummond and D. F. Walls, Two photon absorption with coher-ent and partially coherent driving fields, J. Phys. A: Math. Gen. 10, L187 (1977), doi:10.1088/0305-4470/10/11/003. · doi:10.1088/0305-4470/10/11/003
[93] H. D. Simaan and R. Loudon, Off-diagonal density matrix for single-beam two-photon ab-sorbed light, J. Phys. A: Math. Gen. 11, 435 (1978), doi:10.1088/0305-4470/11/2/018. · doi:10.1088/0305-4470/11/2/018
[94] L. Gilles and P. L. Knight, Two-photon absorption and nonclassical states of light, Phys. Rev. A 48, 1582 (1993), doi:10.1103/PhysRevA.48.1582. · doi:10.1103/PhysRevA.48.1582
[95] L. Gilles, B. M. Garraway and P. L. Knight, Generation of nonclassical light by dissipative two-photon processes, Phys. Rev. A 49, 2785 (1994), doi:10.1103/PhysRevA.49.2785. · doi:10.1103/PhysRevA.49.2785
[96] V. V. Dodonov and S. S. Mizrahi, Competition between one-and two-photon absorption processes, J. Phys. A: Math. Gen. 30, 2915 (1997), doi:10.1088/0305-4470/30/9/008. · Zbl 0946.81525 · doi:10.1088/0305-4470/30/9/008
[97] V. V. Dodonov and S. S. Mizrahi, Exact stationary photon distributions due to competition between one-and two-photon absorption and emission, J. Phys. A: Math. Gen. 30, 5657 (1997), doi:10.1088/0305-4470/30/16/010. · Zbl 0939.81535 · doi:10.1088/0305-4470/30/16/010
[98] H. J. Carmichael, Statistical methods in quantum optics 1, Springer, Berlin, Heidelberg, Germany, ISBN 9783642081330 (1999), doi:10.1007/978-3-662-03875-8. · Zbl 0918.60095 · doi:10.1007/978-3-662-03875-8
[99] V. Gorini, A. Kossakowski and E. C. G. Sudarshan, Completely positive dynamical semi-groups of N -level systems, J. Math. Phys. 17, 821 (1976), doi:10.1063/1.522979. · Zbl 1446.47009 · doi:10.1063/1.522979
[100] G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976), doi:10.1007/BF01608499. · Zbl 0343.47031 · doi:10.1007/BF01608499
[101] C. W. Gardiner and M. J. Collett, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A 31, 3761 (1985), doi:10.1103/PhysRevA.31.3761. · doi:10.1103/PhysRevA.31.3761
[102] C. W. Gardiner and P. Zoller, Quantum noise, Springer, Berlin, Heidelberg, Germany, ISBN 9783540223016 (2004). · Zbl 1072.81002
[103] L. Evans, An introduction to stochastic differential equations, AMS, Providence, USA, ISBN 9781470410544 (2012).
[104] S. Särkkä and A. Solin, Applied stochastic differential equations, Cambridge University Press, Cambridge, UK, ISBN 9781108186735 (2019), doi:10.1017/9781108186735. · Zbl 1467.60043 · doi:10.1017/9781108186735
[105] R. Mannella and P. V. E. McClintock, Itô versus Stratonovich: 30 years later, Fluct. Noise Lett. 11, 1240010 (2012), doi:10.1142/S021947751240010X. · doi:10.1142/S021947751240010X
[106] S. H. Lim, J. Wehr, A. Lampo, M. Á. García-March and M. Lewenstein, On the small mass limit of quantum Brownian motion with inhomogeneous damping and diffusion, J. Stat. Phys. 170, 351 (2017), doi:10.1007/s10955-017-1907-7. · Zbl 1390.82046 · doi:10.1007/s10955-017-1907-7
[107] K. Itô, Differential equations determining a markoff process, J. Pan-Japan Math. Coll. 1077, 1352 (1942).
[108] K. Itô, Stochastic integral, Proc. Japan Acad. Ser. A Math. Sci. 20, 519 (1944), doi:10.3792/pia/1195572786. · Zbl 0060.29105 · doi:10.3792/pia/1195572786
[109] K. Itô, On a stochastic integral equation, Proc. Japan Acad. Ser. A Math. Sci. 22, 32 (1946), doi:10.3792/pja/1195572371. · Zbl 0063.02992 · doi:10.3792/pja/1195572371
[110] R. L. Hudson and K. R. Parthasarathy, Quantum Ito’s formula and stochastic evolutions, Commun. Math. Phys. 93, 301 (1984), doi:10.1007/BF01258530. · Zbl 0546.60058 · doi:10.1007/BF01258530
[111] N. S. Namachchivaya, Stochastic bifurcation, Appl. Math. Comput. 38, 101 (1990), doi:10.1016/0096-3003(90)90051-4. · Zbl 0702.93063 · doi:10.1016/0096-3003(90)90051-4
[112] L. Arnold and P. Boxler, Stochastic bifurcation: Instructive examples in dimension one, in Diffusion processes and related problems in analysis, volume II, Birkhäuser, Boston, USA, ISBN 9781461267393 (1992), doi:10.1007/978-1-4612-0389-6_10. · Zbl 0751.60057 · doi:10.1007/978-1-4612-0389-6_10
[113] L. Arnold, N. S. Namachchivaya and K. R. Schenk-Hoppé, Toward an understand-ing of stochastic Hopf bifurcation, Int. J. Bifurcation Chaos 06, 1947 (1996), doi:10.1142/S0218127496001272. · Zbl 1298.37038 · doi:10.1142/S0218127496001272
[114] S. T. Gevorkyan, G. Y. Kryuchkyan and N. T. Muradyan, Quantum fluctuations in unstable dissipative systems, Phys. Rev. A 61, 043805 (2000), doi:10.1103/PhysRevA.61.043805. · doi:10.1103/PhysRevA.61.043805
[115] M. A. Armen and H. Mabuchi, Low-lying bifurcations in cavity quantum electrodynamics, Phys. Rev. A 73, 063801 (2006), doi:10.1103/PhysRevA.73.063801. · doi:10.1103/PhysRevA.73.063801
[116] A. Chia, L. C. Kwek and C. Noh, Relaxation oscillations and frequency entrainment in quantum mechanics, Phys. Rev. E 102, 042213 (2020), doi:10.1103/PhysRevE.102.042213. · doi:10.1103/PhysRevE.102.042213
[117] K. Ishibashi and R. Kanamoto, Oscillation collapse in coupled quantum van der Pol oscil-lators, Phys. Rev. E 96, 052210 (2017), doi:10.1103/PhysRevE.96.052210. · doi:10.1103/PhysRevE.96.052210
[118] E. Amitai, M. Koppenhöfer, N. Lörch and C. Bruder, Quantum effects in ampli-tude death of coupled anharmonic self-oscillators, Phys. Rev. E 97, 052203 (2018), doi:10.1103/PhysRevE.97.052203. · doi:10.1103/PhysRevE.97.052203
[119] B. Bandyopadhyay, T. Khatun, D. Biswas and T. Banerjee, Quantum manifestations of homogeneous and inhomogeneous oscillation suppression states, Phys. Rev. E 102, 062205 (2020), doi:10.1103/PhysRevE.102.062205. · doi:10.1103/PhysRevE.102.062205
[120] B. Bandyopadhyay, T. Khatun and T. Banerjee, Quantum Turing bifurcation: Transition from quantum amplitude death to quantum oscillation death, Phys. Rev. E 104, 024214 (2021), doi:10.1103/PhysRevE.104.024214. · doi:10.1103/PhysRevE.104.024214
[121] Y. Kato and H. Nakao, Turing instability in quantum activator-inhibitor systems, Sci. Rep. 12, 15573 (2022), doi:10.1038/s41598-022-19010-0. · doi:10.1038/s41598-022-19010-0
[122] A. B. Klimov and J. L. Romero, An algebraic solution of Lindblad-type master equations, J. Opt. B: Quantum Semiclass. Opt. 5, S316 (2003), doi:10.1088/1464-4266/5/3/363. · doi:10.1088/1464-4266/5/3/363
[123] V. V. Albert and L. Jiang, Symmetries and conserved quantities in Lindblad master equa-tions, Phys. Rev. A 89, 022118 (2014), doi:10.1103/PhysRevA.89.022118. · doi:10.1103/PhysRevA.89.022118
[124] J. Qian, A. A. Clerk, K. Hammerer and F. Marquardt, Quantum signa-tures of the optomechanical instability, Phys. Rev. Lett. 109, 253601 (2012), doi:10.1103/PhysRevLett.109.253601. · doi:10.1103/PhysRevLett.109.253601
[125] N. Lörch, J. Qian, A. Clerk, F. Marquardt and K. Hammerer, Laser theory for op-tomechanics: Limit cycles in the quantum regime, Phys. Rev. X 4, 011015 (2014), doi:10.1103/PhysRevX.4.011015. · doi:10.1103/PhysRevX.4.011015
[126] J. X. Zhou, M. D. S. Aliyu, E. Aurell and S. Huang, Quasi-potential landscape in complex multi-stable systems, J. R. Soc. Interface 9, 3539 (2012), doi:10.1098/rsif.2012.0434. · doi:10.1098/rsif.2012.0434
[127] P. Zhou and T. Li, Construction of the landscape for multi-stable systems: Potential land-scape, quasi-potential, A-type integral and beyond, NonJ. Chem. Phys.e 144, 094109 (2016), doi:10.1063/1.4943096. · doi:10.1063/1.4943096
[128] P. Ao, Potential in stochastic differential equations: Novel construction, J. Phys. A: Math. Gen. 37, L25 (2004), doi:10.1088/0305-4470/37/3/L01. · Zbl 1050.60056 · doi:10.1088/0305-4470/37/3/L01
[129] C. Kwon, P. Ao and D. J. Thouless, Structure of stochastic dynamics near fixed points, Proc. Natl. Acad. Sci. 102, 13029 (2005), doi:10.1073/pnas.0506347102. · doi:10.1073/pnas.0506347102
[130] J. Shi, T. Chen, R. Yuan, B. Yuan and P. Ao, Relation of a new interpretation of stochastic differential equations to Ito process, J. Stat. Phys. 148, 579 (2012), doi:10.1007/s10955-012-0532-8. · Zbl 1251.82043 · doi:10.1007/s10955-012-0532-8
[131] K. Alligood, T. Sauer and J. Yorke, Chaos: An introduction to dynamical systems, Springer, New York, USA, ISBN 9780387224923 (1996), doi:10.1007/b97589. · Zbl 0867.58043 · doi:10.1007/b97589
[132] L. Mandel, Non-classical states of the electromagnetic field, Phys. Scr. 34 (1986), doi:10.1088/0031-8949/1986/T12/005. · doi:10.1088/0031-8949/1986/T12/005
[133] R. Nair, Nonclassical distance in multimode bosonic systems, Phys. Rev. A 95, 063835 (2017), doi:10.1103/PhysRevA.95.063835. · doi:10.1103/PhysRevA.95.063835
[134] K. Tomita and H. Tomita, Irreversible circulation of fluctuation, Prog. Theor. Phys. 51, 1731 (1974), doi:10.1143/PTP.51.1731. · doi:10.1143/PTP.51.1731
[135] K. Tomita, T. Ohta and H. Tomita, Irreversible circulation and orbital revolution: Hard mode instability in far-from-equilibrium situation, Prog. Theor. Phys. 52, 1744 (1974), doi:10.1143/PTP.52.1744. · doi:10.1143/PTP.52.1744
[136] B. Baumgartner and H. Narnhofer, Analysis of quantum semigroups with GKS-Lindblad generators: II. General, J. Phys. A: Math. Theor. 41, 395303 (2008), doi:10.1088/1751-8113/41/39/395303. · Zbl 1152.81031 · doi:10.1088/1751-8113/41/39/395303
[137] B. Buča and T. Prosen, A note on symmetry reductions of the Lindblad equation: Transport in constrained open spin chains, New J. Phys. 14, 073007 (2012), doi:10.1088/1367-2630/14/7/073007. · doi:10.1088/1367-2630/14/7/073007
[138] S. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chem-istry, and engineering, CRC Press, Boca Raton, USA, ISBN 9780429961113 (2018), doi:10.1201/9780429492563 . · doi:10.1201/9780429492563
[139] R. Graham and H. Haken, Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium, Z. Phys. 243, 289 (1971), doi:10.1007/BF01394858. · doi:10.1007/BF01394858
[140] H. Risken, Solutions of the Fokker-Planck equation in detailed balance, Z. Phys. 251, 231 (1972), doi:10.1007/BF01379601. · doi:10.1007/BF01379601
[141] L. Peliti and S. Pigolotti, Stochastic thermodynamics: An introduction, Princeton Univer-sity Press, Princeton, USA, ISBN 9780691201771 (2021). · Zbl 1480.82002
[142] M. San Miguel and S. Chaturvedi, Limit cycles and detailed balance in Fokker-Planck equations, Z. Phys. B 40, 167 (1980), doi:10.1007/BF01295086. · doi:10.1007/BF01295086
[143] G. S. Agarwal, Open quantum Markovian systems and the microreversibility, Z. Phys. 258, 409 (1973), doi:10.1007/BF01391504. · doi:10.1007/BF01391504
[144] H. J. Carmichael and D. F. Walls, Detailed balance in open quantum Markoffian systems, Z. Phys. B 23, 299 (1976), doi:10.1007/BF01318974. · doi:10.1007/BF01318974
[145] J. Sakurai and J. Napolitano, Modern quantum mechanics, Cambridge University Press, Cambridge, UK, ISBN 9781108473224 (2021).
[146] O. Steuernagel, D. Kakofengitis and G. Ritter, Wigner flow reveals topological or-der in quantum phase space dynamics, Phys. Rev. Lett. 110, 030401 (2013), doi:10.1103/PhysRevLett.110.030401. · doi:10.1103/PhysRevLett.110.030401
[147] W. F. Braasch, O. D. Friedman, A. J. Rimberg and M. P. Blencowe, Wigner current for open quantum systems, Phys. Rev. A 100, 012124 (2019), doi:10.1103/PhysRevA.100.012124. · doi:10.1103/PhysRevA.100.012124
[148] C. W. Gardiner and P. Zoller, Quantum noise, Springer, Berlin, Heidelberg, Germany, ISBN 9783642060946 (2010). · Zbl 0998.81555
[149] S. H. Strogatz, Nonlinear dynamics and chaos, Westview Press, Oxford, USA, ISBN 9780429492563 (2015). · Zbl 1343.37001
[150] C. W. Gardiner, Stochastic Methods -A handbook for the natural and social sciences, Springer, Berlin, Heidelberg, Germany, ISBN 9783540707127 (2009). · Zbl 1181.60001
[151] K. Tomita, H. Tomita, Irreversible circulation of fluctuations, Prog. Theor. Phys. 51, 1781 (1974), doi:10.1143/PTP.119.515. · Zbl 1151.82349 · doi:10.1143/PTP.119.515
[152] K. Tomita, T. Ohta, and H. Tomita, Irreversible circulation and orbital revolution, Prog. Theor. Phys. 52, 1744 (1974), doi:10.1143/PTP.52.1744. · doi:10.1143/PTP.52.1744
[153] H. D. Simaan and R. Loudon, Quantum statistics of single-beam two-photon absorption, J. Phys. A Math. Gen. 8, 539 (1975), doi:10.1088/0305-4470/8/4/016. · doi:10.1088/0305-4470/8/4/016
[154] H. D. Simaan and R. Loudon, Off-diagonal density matrix for single-beam two-photon ab-sorbed light, J. Phys. A Math. Gen. 11, 435 (1978), doi:10.1088/0305-4470/11/2/018. · doi:10.1088/0305-4470/11/2/018
[155] B. Buča and T. Prosen, A note on symmetry reductions of the Lindblad equation: Transport in constrained open spin chains, New J. Phys. 14, 073007 (2012), doi:10.1088/1367-2630/14/7/073007. · doi:10.1088/1367-2630/14/7/073007
[156] V. V. Albert and L. Jiang, Symmetries and conserved quantities in Lindblad master equa-tions, Phys. Rev. A 89, 022118 (2014), doi:10.1103/PhysRevA.89.022118. · doi:10.1103/PhysRevA.89.022118
[157] A. Chia, M. Hadjušek, R. Nair, R. Fazio, L. C. Kwek, and V. Vedral, Phase-preserving linear amplifiers not simulable by the parametric amplifier, Phys. Rev. Lett. 125, 163603 (2020), doi:10.1103/PhysRevLett.125.163603. · doi:10.1103/PhysRevLett.125.163603
[158] R. Graham and H. Haken, Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium, Z. Phys. 243, 289 (1971), doi:10.1007/BF01394858. · doi:10.1007/BF01394858
[159] H. Risken, Solutions of Fokker-Planck equation in detailed balance, Z. Phys. 251, 231 (1972), doi:10.1007/BF01379601. · doi:10.1007/BF01379601
[160] J. J. Sakurai and J. Napolitano, Modern quantum mechanics, Cambridge University Press, Cambridge, UK, ISBN 9781108587280 (2021), doi:10.1017/9781108587280. · Zbl 1444.81001 · doi:10.1017/9781108587280
[161] G. S. Agarwal, Open quantum Markovian systems and the microreversibility, Z. Phys. 258, 409 (1973), doi:10.1007/BF01391504. · doi:10.1007/BF01391504
[162] H. J. Carmichael and D. F. Walls, Detailed balance in open quantum Markoffian systems, Z. Phys. B Condens. Matter 23, 299 (1976), doi:10.1007/BF01318974. · doi:10.1007/BF01318974
[163] O. Steuernagel, D. Kakofengitis, and G. Ritter, Wigner flow reveals topological order in quantum phase space dynamics, Phys. Rev. Lett. 110, 030401 (2013), doi:10.1103/PhysRevLett.110.030401. · doi:10.1103/PhysRevLett.110.030401
[164] W. F. Braasch Jr., O. D. Friedman, A. J. Rimberg, and M. P. Blencowe, Wigner current for open quantum systems, Phys. Rev. A 100, 012124 (2019), doi:10.1103/PhysRevA.100.012124. · doi:10.1103/PhysRevA.100.012124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.