×

Interacting Brownian particles exhibiting enhanced rectification in an asymmetric channel. (English) Zbl 1539.82256

Summary: Rectification of interacting Brownian particles is investigated in a two-dimensional asymmetric channel in the presence of an external periodic driving force. The periodic driving force can break the thermodynamic equilibrium and induces rectification of particles (or finite average velocity). The spatial variation in the shape of the channel leads to entropic barriers, which indeed control the rectification of particles. We find that by simply tuning the driving frequency, driving amplitude, and shape of the asymmetric channel, the average velocity can be reversed. Moreover, a short range interaction force between the particles further enhances the rectification of particles greatly. This interaction force is modeled as the lubrication interaction. Interestingly, it is observed that there exists a characteristic critical frequency \(\Omega_c\) below which the rectification of particles greatly enhances in the positive direction with increasing the interaction strength; whereas, for the frequency above this critical value, it greatly enhances in the negative direction with increasing the interaction strength. Further, there exists an optimal value of the asymmetric parameter of the channel for which the rectification of interacting particles is maximum. These findings are useful in sorting out the particles and understanding the diffusive behavior of small particles or molecules in microfluidic channels, membrane pores, etc.

MSC:

82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] Kärger, J.; Ruthven, D. M., Diffusion in Zeolites and Other Microporous Solids (1992), New York: Wiley, New York
[2] Hille, B., Ion Channels of Excitable Membranes (2001), Sunderland: Sinauer, Sunderland
[3] Reguera, D.; Schmid, G.; Burada, P. S.; Rubí, J. M.; Reimann, P.; Hänggi, P., Phys. Rev. Lett., 96 (2006) · doi:10.1103/physrevlett.96.130603
[4] Reguera, D.; Rubi, J. M., Phys. Rev. E, 64 (2001) · doi:10.1103/physreve.64.061106
[5] Khatri, N.; Burada, P. S., J. Chem. Phys., 151 (2019) · doi:10.1063/1.5116330
[6] Khatri, N.; Burada, P. S., Phys. Rev. E, 102 (2020) · doi:10.1103/physreve.102.012137
[7] Hu, C-t; Ou, Y-l; Wu, J-c; Ai, B-q, J. Stat. Mech. (2016) · doi:10.1088/1742-5468/2016/03/033207
[8] Wu, J-c; Chen, Q.; Ai, B-q, J. Stat. Mech. (2015) · Zbl 1456.82874 · doi:10.1088/1742-5468/2015/07/p07005
[9] Hu, C-t; Ou, Y-l; Wu, J-c; Chen, Q.; Ai, B-q, J. Stat. Mech. (2015) · doi:10.1088/1742-5468/2015/05/p05025
[10] Li, F-g; Ai, B-q, J. Stat. Mech. (2014) · Zbl 1456.82675 · doi:10.1088/1742-5468/2014/04/p04027
[11] Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F., Eur. Phys. J. Spec. Top., 223, 3227 (2014) · doi:10.1140/epjst/e2014-02329-1
[12] Ghosh, P. K.; Misko, V. R.; Marchesoni, F.; Nori, F., Phys. Rev. Lett., 110 (2013) · doi:10.1103/physrevlett.110.268301
[13] Li, Y.; Ghosh, P. K.; Marchesoni, F.; Li, B., Phys. Rev. E, 90 (2014) · doi:10.1103/physreve.90.062301
[14] Hänggi, P.; Marchesoni, F., Rev. Mod. Phys., 81, 387 (2009) · doi:10.1103/revmodphys.81.387
[15] Han, J.; Craighead, H. G., Science, 288, 1026 (2000) · doi:10.1126/science.288.5468.1026
[16] Matthias, S.; Müller, F., Nature, 424, 53 (2003) · doi:10.1038/nature01736
[17] Astumian, R. D., Science, 276, 917 (1997) · doi:10.1126/science.276.5314.917
[18] Ai, B. Q.; Liu, L. G., Phys. Rev. E, 74 (2006) · doi:10.1103/physreve.74.051114
[19] Ai, B. Q., Phys. Rev. E, 80 (2009) · doi:10.1103/physreve.80.011113
[20] Malgaretti, P.; Pagonabarraga, I.; Rubi, J. M., J. Chem. Phys., 138 (2013) · doi:10.1063/1.4804632
[21] Ai, B-Q; Zhu, W-J; He, Y-F; Zhong, W-R, J. Stat. Mech. (2017) · Zbl 1457.82367 · doi:10.1088/1742-5468/aa4fa4
[22] Ghosh, P. K.; Ray, D. S., J. Stat. Mech. (2007) · doi:10.1088/1742-5468/2007/03/p03003
[23] Huang, X-Q; Liao, J-J; Ai, B-Q, J. Stat. Mech. (2018) · doi:10.1088/1742-5468/aaa9fb
[24] Gao, T-f; Ai, B-q; Zheng, Z-g; Chen, J-c, J. Stat. Mech. (2016) · Zbl 1457.82310 · doi:10.1088/1742-5468/2016/09/093204
[25] Ai, B-q; He, Y-f, J. Stat. Mech. (2010) · doi:10.1088/1742-5468/2010/04/p04010
[26] Hänggi, P.; Marchesoni, F.; Nori, F., Ann. Phys., Lpz., 14, 51 (2005) · Zbl 1160.82332 · doi:10.1002/andp.200410121
[27] Astumian, R. D.; Derényi, I., Eur. Biophys. J., 27, 474 (1998) · doi:10.1007/s002490050158
[28] Krim, J.; Solina, D. H.; Chiarello, R., Phys. Rev. Lett., 66, 181 (1991) · doi:10.1103/physrevlett.66.181
[29] Derényi, I.; Lee, C.; Barabási, A-L, Phys. Rev. Lett., 80, 1473 (1998) · doi:10.1103/physrevlett.80.1473
[30] Zapata, I.; Bartussek, R.; Sols, F.; Hänggi, P., Phys. Rev. Lett., 77, 2292 (1996) · doi:10.1103/physrevlett.77.2292
[31] Reguera, D.; Luque, A.; Burada, P. S.; Schmid, G.; Rubi, J. M.; Hänggi, P., Phys. Rev. Lett., 108 (2012) · doi:10.1103/physrevlett.108.020604
[32] Faucheux, L. P.; Bourdieu, L. S.; Kaplan, P. D.; Libchaber, A. J., Phys. Rev. Lett., 74, 1504 (1995) · doi:10.1103/physrevlett.74.1504
[33] Borromeo, M.; Marchesoni, F., Phys. Rev. Lett., 99 (2007) · Zbl 1228.81107 · doi:10.1103/physrevlett.99.150605
[34] Denisov, S.; Hänggi, P.; Mateos, J. L., Am. J. Phys., 77, 602 (2009) · doi:10.1119/1.3089530
[35] Magnasco, M. O., Phys. Rev. Lett., 71, 1477 (1993) · doi:10.1103/physrevlett.71.1477
[36] Hänggi, P.; Bartussek, R., Nonlinear Physics of Complex System: Current Status and Future Trends (1996), Berlin: Springer, Berlin
[37] Reimann, P.; Bartussek, R.; Häußler, R.; Hänggi, P., Phys. Lett. A, 215, 26 (1996) · doi:10.1016/0375-9601(96)00222-8
[38] Doering, C. R.; Horsthemke, W.; Riordan, J., Phys. Rev. Lett., 72, 2984 (1994) · doi:10.1103/physrevlett.72.2984
[39] O’Neill, M. E.; Stewartson, K., J. Fluid Mech., 27, 705-724 (1967) · Zbl 0147.45302 · doi:10.1017/s0022112067002551
[40] Wu, J-C; Lv, K.; Zhao, W-W; Ai, B-Q, Chaos, 28 (2018) · doi:10.1063/1.5050614
[41] Rein, M.; Speck, T., Eur. Phys. J. E, 39, 84 (2016) · doi:10.1140/epje/i2016-16084-7
[42] Mazroui, M.; Boughaleb, Y., Physica A, 227, 93 (1996) · doi:10.1016/0378-4371(95)00367-3
[43] Li, J.; Jiang, X.; Singh, A.; Heinonen, O. G.; Hernández-Ortiz, J. P.; de Pablo, J. J., J. Chem. Phys., 152 (2020) · doi:10.1063/1.5139431
[44] Vicsek, T.; Czirók, A.; Ben-Jacob, E.; Cohen, I.; Shochet, O., Phys. Rev. Lett., 75, 1226 (1995) · doi:10.1103/physrevlett.75.1226
[45] Czirók, A.; Stanley, H. E.; Vicsek, T., J. Phys. A: Math. Gen., 30, 1375 (1997) · doi:10.1088/0305-4470/30/5/009
[46] Burada, P. S.; Schmid, G.; Reguera, D.; Vainstein, M. H.; Rubi, J. M.; Hänggi, P., Phys. Rev. Lett., 101 (2008) · doi:10.1103/physrevlett.101.130602
[47] Ai, B-q, J. Chem. Phys., 131 (2009) · doi:10.1063/1.3200923
[48] Schmid, G.; Burada, P. S.; Talkner, P.; Hänggi, P., Adv. Solid State Phys., 48, 317 (2009) · doi:10.1007/978-3-540-85859-1_25
[49] Mahmud, G.; Campbell, C. J.; Bishop, K. J M.; Komarova, Y. A.; Chaga, O.; Soh, S.; Huda, S.; Kandere-Grzybowska, K.; Grzybowski, B. A., Nat. Phys., 5, 606 (2009) · doi:10.1038/nphys1306
[50] Cussler, E. L., Diffusion: Mass Transfer in Fluid Systems (1997), Cambridge: Cambridge University Press, Cambridge
[51] Mukhopadhyay, A. K.; Liebchen, B.; Schmelcher, P., Phys. Rev. Lett., 120 (2018) · doi:10.1103/physrevlett.120.218002
[52] Jülicher, F.; Ajdari, A.; Prost, J., Rev. Mod. Phys., 69, 1269 (1997) · doi:10.1103/revmodphys.69.1269
[53] Siegel, R. A., J. Controlled Release, 69, 109 (2000) · doi:10.1016/s0168-3659(00)00292-3
[54] Metzler, R.; Jeon, J-H; Cherstvy, A. G.; Barkai, E., Phys. Chem. Chem. Phys., 16, 24128 (2014) · doi:10.1039/c4cp03465a
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.