×

Single file diffusion meets Feynman path integral. (English) Zbl 1539.82166

Summary: The path-integral representation of the Smoluchowski equation is exploited to explore the stochastic dynamics of a tagged Brownian particle within an interacting system where hydrodynamic effects are neglected. In particular, this formalism is applied to a particle system confined to a one-dimensional infinite line aiming to investigate the single-file diffusion phenomenon in this scenario. In particular, the path-integral method is contrasted against the standard many-particle Langevin equation for a system of interacting Brownian particles in a harmonic chain model, exhibiting excellent agreement; in this case of study a formula defined on the whole time-scale for the mean-square displacement, in the thermodynamic limit, is found for the tracer particle in terms of Bessel functions, recovering also the single-file regime. Additionally, a Brownian particle system with paramagnetic interactions is considered near crystallization where the total interaction potential is roughly a harmonic potential. Taking advantage of the path-integral formalism a simple perturbation treatment is carried out to investigate the single file diffusion behaviour when temperature is increased from the crystal phase, where we also validate our findings using Brownian dynamics simulation.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
81S40 Path integrals in quantum mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] Hodgkin, A. L.; Keynes, R. D., The potassium permeability of a giant nerve fibre, J. Physiol., 128, 61-88 (1955) · doi:10.1113/jphysiol.1955.sp005291
[2] Kärger, J., Measurement of diffusion in zeolites—a never ending challenge?, Adsorption, 9, 29-35 (2003) · doi:10.1023/a:1023811229823
[3] Wei, Q.; Bechinger, C.; Leiderer, P., Single-file diffusion of colloids in one-dimensional channels, Science, 287, 625-627 (2000) · doi:10.1126/science.287.5453.625
[4] Lutz, C.; Kollmann, M.; Leiderer, P.; Bechinger, C., Diffusion of colloids in one-dimensional light channels, J. Phys.: Condens. Matter, 16, S4075-S4083 (2004) · doi:10.1088/0953-8984/16/38/022
[5] Lutz, C.; Kollmann, M.; Bechinger, C., Single-file diffusion of colloids in one-dimensional channels, Phys. Rev. Lett., 93 (2004) · doi:10.1103/physrevlett.93.026001
[6] Lin, B.; Meron, M.; Cui, B.; Rice, S. A.; Diamant, H., From random walk to single-file diffusion, Phys. Rev. Lett., 94 (2005) · doi:10.1103/physrevlett.94.216001
[7] Coupier, G.; Jean, M. S.; Guthmann, C., Publisher’s Note: Single file diffusion in macroscopic Wigner rings [Phys. Rev. E 73, 031112 (2006)], Phys. Rev. E, 73 (2006) · doi:10.1103/physreve.73.049903
[8] Coupier, G.; Jean, M. S.; Guthmann, C., Single file diffusion enhancement in a fluctuating modulated quasi-1d channel, Europhys. Lett., 77 (2007) · doi:10.1209/0295-5075/77/60001
[9] Coste, C.; Delfau, J-B; Even, C.; Jean, M. S., Single-file diffusion of macroscopic charged particles, Phys. Rev. E, 81 (2010) · doi:10.1103/physreve.81.051201
[10] Kollmann, M., Single-file diffusion of atomic and colloidal systems: asymptotic laws, Phys. Rev. Lett., 90 (2003) · doi:10.1103/physrevlett.90.180602
[11] Nägele, G., On the dynamics and structure of charge-stabilized suspensions, Phys. Rep., 272, 215-372 (1996) · doi:10.1016/0370-1573(95)00078-x
[12] Krapivsky, P. L.; Mallick, K.; Sadhu, T., Large deviations in single-file diffusion, Phys. Rev. Lett., 113 (2014) · doi:10.1103/physrevlett.113.078101
[13] Krapivsky, P. L.; Mallick, K.; Sadhu, T., Dynamical properties of single-file diffusion, J. Stat. Mech. (2015) · Zbl 1456.82672 · doi:10.1088/1742-5468/2015/09/p09007
[14] Martin, P. C.; Siggia, E. D.; Rose, H. A., Statistical dynamics of classical systems, Phys. Rev. A, 8, 423-437 (1973) · doi:10.1103/physreva.8.423
[15] Lizana, L.; Ambjörnsson, T., Single-file diffusion in a box, Phys. Rev. Lett., 100 (2008) · doi:10.1103/physrevlett.100.200601
[16] Hegde, C.; Sabhapandit, S.; Dhar, A., Universal large deviations for the tagged particle in single-file motion, Phys. Rev. Lett., 113 (2014) · doi:10.1103/physrevlett.113.120601
[17] Sadhu, T.; Derrida, B., Large deviation function of a tracer position in single file diffusion, J. Stat. Mech. (2015) · Zbl 1456.82691 · doi:10.1088/1742-5468/2015/09/p09008
[18] Leibovich, N.; Barkai, E., Everlasting effect of initial conditions on single-file diffusion, Phys. Rev. E, 88 (2013) · doi:10.1103/physreve.88.032107
[19] Lizana, L.; Ambjörnsson, T.; Taloni, A.; Barkai, E.; Lomholt, M. A., Foundation of fractional Langevin equation: harmonization of a many-body problem, Phys. Rev. E, 81 (2010) · doi:10.1103/physreve.81.051118
[20] Delfau, J-B; Coste, C.; Saint Jean, M., Single-file diffusion of particles with long-range interactions: damping and finite-size effects, Phys. Rev. E, 84 (2011) · doi:10.1103/physreve.84.011101
[21] Aslangul, C., Classical diffusion of n interacting particles in one dimension: general results and asymptotic laws, Europhys. Lett., 44, 284-289 (1998) · doi:10.1209/epl/i1998-00471-9
[22] Nelson, P. H.; Auerbach, S. M., Self-diffusion in single-file zeolite membranes is Fickian at long times, J. Chem. Phys., 110, 9235-9243 (1999) · doi:10.1063/1.478847
[23] Taloni, A.; Marchesoni, F., Single-file diffusion on a periodic substrate, Phys. Rev. Lett., 96 (2006) · Zbl 1163.37353 · doi:10.1103/physrevlett.96.020601
[24] Herrera-Velarde, S.; Castañeda-Priego, R., Structure and dynamics of interacting Brownian particles in one-dimensional periodic substrates, J. Phys.: Condens. Matter, 19 (2007) · doi:10.1088/0953-8984/19/22/226215
[25] Herrera-Velarde, S.; Castañeda-Priego, R., Superparamagnetic colloids confined in narrow corrugated substrates, Phys. Rev. E, 77 (2008) · doi:10.1103/physreve.77.041407
[26] Taloni, A.; Flomenbom, O.; Castañeda-Priego, R.; Marchesoni, F., Single file dynamics in soft materials, Soft Matter, 13, 1096-1106 (2017) · doi:10.1039/c6sm02570f
[27] Dhont, J. K G., An Introduction to Dynamics of Colloids (1996), Amsterdam: Elsevier, Amsterdam
[28] Brush, S. G., Functional integrals and statistical physics, Rev. Mod. Phys., 33, 79-92 (1961) · Zbl 0095.43605 · doi:10.1103/revmodphys.33.79
[29] Wiegel, F. W., Path integral methods in statistical mechanics, Phys. Rep., 16, 57-114 (1975) · doi:10.1016/0370-1573(75)90030-7
[30] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena. International Series of Monographs on Physics (1996), Oxford: Oxford University Press, Oxford · Zbl 0865.00014
[31] Chaichian, M.; Demichev, A., Path Integrals in Physics: Volume I Stochastic Processes and Quantum Mechanics (2001), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1074.81537
[32] Corradini, O.; Faccioli, P.; Orland, H., Simulating stochastic dynamics using large time steps, Phys. Rev. E, 80 (2009) · doi:10.1103/physreve.80.061112
[33] Chaikin, P. M.; Lubensky, T. C., Principles of Condensed Matter Physics (1995), Cambridge: Cambridge University Press, Cambridge
[34] Zahn, K.; Méndez-Alcaraz, J. M.; Maret, G., Hydrodynamic interactions may enhance the self-diffusion of colloidal particles, Phys. Rev. Lett., 79, 175 (1997) · doi:10.1103/physrevlett.79.175
[35] Gradshteyn, I. S.; Ryzhik’s, I. M., Tables of Integrals, Series, and Products, 1193-1197 (1979), New York: Academic, New York
[36] Geim, A. K.; Simon, M. D.; Boamfa, M. I.; Heflinger, L. O., Magnet levitation at your fingertips, Nature, 400, 323-324 (1999) · doi:10.1038/22444
[37] Gardiner, C., Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (1985), Berlin: Springer, Berlin
[38] Ermak, D. L.; McCammon, J. A., Brownian dynamics with hydrodynamic interactions, J. Chem. Phys., 69, 1352-1360 (1978) · doi:10.1063/1.436761
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.