×

Multiple current reversals in driven inertial coupled Brownian particles under rough symmetric periodic potential. (English) Zbl 07916085

Summary: Multiple current reversals, where the direction of the net current changes multiple times with the external load, is an anomalous transport property of a driven inertial Brownian particle under periodic potential. Here, we investigated inertial coupled Brownian particles under rough symmetric periodic potential driven by external periodic force to uncover that small microscopic spatial heterogeneity leads to multiple current reversals under weak inter particle coupling. We showed that the current reversals do not exist without the roughness in the potential and coupling of the particles. Although the multiple current reversals persists in a wide range of noise strengths, however, it is sensitive to dissipation constant and parameters of the external driving force. The collective dynamics of the coupled particles becomes asynchronous in presence of roughness and may be responsible for the anomalous behavior. Our calculations underscore a nontrivial role of microscopic spatial heterogeneity of the periodic potential in the transport properties of coupled Brownian particles.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Astumian, R. D.; Hänggi, P., Brownian motors, Phys. Today, 55, 11, 33-39, 2002
[2] Reimann, P., Brownian motors: noisy transport far from equilibrium, Phys. Rep., 361, 2, 57-265, 2002 · Zbl 1001.82097
[3] Hänggi, P.; Marchesoni, F.; Nori, F., Brownian motors, Ann. Phys., Lpz., 14, 1-3, 51-70, 2005 · Zbl 1160.82332
[4] Kosturt, M.; Luczka, J., Transport in ratched-type systems, Acta Phys. Polon. Ser. B, 27, 1996 · Zbl 0966.82516
[5] Mateos, J. L., Chaotic transport and current reversal in deterministic ratchets, Phys. Rev. Lett., 84, 258-261, 2000
[6] Reimann, P.; Hänggi, P., Introduction to the physics of Brownian motors, Appl. Phys. A, 75, 2, 169-178, 2002
[7] Hänggi, P.; Marchesoni, F., Introduction: 100 years of Brownian motion, Chaos (Woodbury, NY), 15, 2, 26101, 2005
[8] Hänggi, P.; Marchesoni, F., Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Modern Phys., 81, 387-442, 2009
[9] Spudich, J. A., The myosin swinging cross-bridge model, Nat. Rev. Mol. Cell Biol., 2, 5, 387-392, 2001
[10] Bhabha, G.; Johnson, G. T.; Schroeder, C. M.; Vale, R. D., How dynein moves along microtubules, Trends Biochem. Sci., 41, 1, 94-105, 2016, special Issue: 40 Years of TiBS
[11] Herbert, K. M.; Greenleaf, W. J.; Block, S. M., Single-molecule studies of rna polymerase: Motoring along, Annu. Rev. Biochem., 77, 1, 149-176, 2008, pMID: 18410247
[12] Berg, H. C., The rotary motor of bacterial flagella, Annu. Rev. Biochem., 72, 1, 19-54, 2003, pMID: 12500982
[13] Bressloff, P. C.; Newby, J. M., Stochastic models of intracellular transport, Rev. Modern Phys., 85, 1, 135, 2013
[14] Karnik, R.; Duan, C.; Castelino, K.; Daiguji, H.; Majumdar, A., Rectification of ionic current in a nanofluidic diode, Nano Lett., 7, 3, 547-551, 2007, pMID: 17311461
[15] Mahmud, G.; Campbell, C. J.; Bishop, K. J.; Komarova, Y. A.; Chaga, O.; Soh, S.; Huda, S.; Kandere-Grzybowska, K.; Grzybowski, B. A., Directing cell motions on micropatterned ratchets, Nat. Phys., 5, 8, 606, 2009
[16] Zapata, I.; Bartussek, R.; Sols, F.; Hänggi, P., Voltage rectification by a squid ratchet, Phys. Rev. Lett., 77, 2292-2295, 1996
[17] Goldobin, E.; Sterck, A.; Koelle, D., Josephson vortex in a ratchet potential: Theory, Phys. Rev. E, 63, Article 031111 pp., 2001
[18] Spiechowicz, J.; Hänggi, P.; Łuczka, J., Josephson junction ratchet: The impact of finite capacitances, Phys. Rev. B, 90, Article 054520 pp., 2014
[19] Spiechowicz, J.; Łuczka, J., SQUID ratchet: Statistics of transitions in dynamical localization, Chaos, 29, 1, Article 013105 pp., 2019
[20] Spiechowicz, J.; Łuczka, J.; Hänggi, P., Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation, Sci. Rep., 6, 30948, 2016
[21] Spiechowicz, J.; Łuczka, J., Subdiffusion via dynamical localization induced by thermal equilibrium fluctuations, Sci. Rep., 7, 1, 1-7, 2017
[22] Białas, K.; Łuczka, J.; Hänggi, P.; Spiechowicz, J., Colossal Brownian yet non-gaussian diffusion induced by nonequilibrium noise, Phys. Rev. E, 102, Article 042121 pp., 2020
[23] Eichhorn, R.; Reimann, P.; Hänggi, P., Brownian motion exhibiting absolute negative mobility, Phys. Rev. Lett., 88, Article 190601 pp., 2002
[24] Machura, L.; Kostur, M.; Talkner, P.; Łuczka, J.; Hänggi, P., Absolute negative mobility induced by thermal equilibrium fluctuations, Phys. Rev. Lett., 98, Article 040601 pp., 2007
[25] Spiechowicz, J.; Łuczka, J.; Hänggi, P., Absolute negative mobility induced by white Poissonian noise, J. Stat. Mech. Theory Exp., 2013, 02, P02044, 2013 · Zbl 1456.82794
[26] Spiechowicz, J.; Hänggi, P.; Łuczka, J., Brownian motors in the microscale domain: Enhancement of efficiency by noise, Phys. Rev. E, 90, Article 032104 pp., 2014, URL https://link.aps.org/doi/10.1103/PhysRevE.90.032104
[27] Spiechowicz, J.; Hänggi, P.; Łuczka, J., Coexistence of absolute negative mobility and anomalous diffusion, New J. Phys., 21, 8, Article 083029 pp., 2019
[28] Li, J.-j.; Xie, H.-z.; Li, T.-C.; Ai, B.-q., Absolute negative mobility induced by fractional Gaussian noise, Phys. A, 560, Article 125164 pp., 2020 · Zbl 07532714
[29] Luo, Y.; Zeng, C.; Ai, B.-Q., Strong-chaos-caused negative mobility in a periodic substrate potential, Phys. Rev. E, 102, Article 042114 pp., 2020
[30] Wickenbrock, A.; Cubero, D.; Wahab, N. A.A.; Phoonthong, P.; Renzoni, F., Current reversals in a rocking ratchet: The frequency domain, Phys. Rev. E, 84, Article 021127 pp., 2011, URL https://link.aps.org/doi/10.1103/PhysRevE.84.021127
[31] Metzler, R.; Jeon, J.-H.; Cherstvy, A. G.; Barkai, E., Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys., 16, 24128-24164, 2014
[32] Cai, C.-C.; Liu, J.-L.; Chen, H.; Li, F.-G., Current reversals of an underdamped Brownian particle in an asymmetric deformable potential, Commun. Theor. Phys. (Beijing), 69, 3, 266, 2018
[33] Chen, R.; Zhang, G.; Wang, C.; Nie, L.; Chen, C., Current reversal in a symmetric periodic potential, Chaos Solitons Fractals, 98, 205-209, 2017
[34] Alatriste, F. R.; Mateos, J. L., Anomalous mobility and current reversals in inertial deterministic ratchets, Phys. A, 384, 2, 223-229, 2007
[35] Nagel, J.; Speer, D.; Gaber, T.; Sterck, A.; Eichhorn, R.; Reimann, P.; Ilin, K.; Siegel, M.; Koelle, D.; Kleiner, R., Observation of negative absolute resistance in a Josephson junction, Phys. Rev. Lett., 100, Article 217001 pp., 2008
[36] Höpfel, R. A.; Shah, J.; Wolff, P. A.; Gossard, A. C., Negative absolute mobility of minority electrons in gaas quantum wells, Phys. Rev. Lett., 56, 2736-2739, 1986
[37] Keay, B. J.; Zeuner, S.; Allen, S. J.; Maranowski, K. D.; Gossard, A. C.; Bhattacharya, U.; Rodwell, M. J.W., Dynamic localization, absolute negative conductance, and stimulated, multiphoton emission in sequential resonant tunneling semiconductor superlattices, Phys. Rev. Lett., 75, 4102-4105, 1995
[38] Słapik, A.; Łuczka, J.; Hänggi, P.; Spiechowicz, J., Tunable mass separation via negative mobility, Phys. Rev. Lett., 122, Article 070602 pp., 2019
[39] Słapik, A.; Łuczka, J.; Spiechowicz, J., Temperature-induced tunable particle separation, Phys. Rev. Appl., 12, Article 054002 pp., 2019
[40] Słapik, A.; Spiechowicz, J., Tunable particle separation via deterministic absolute negative mobility, Sci. Rep., 10, 1, 1-9, 2020
[41] Heuer, A., Exploring the potential energy landscape of glass- forming systems: from inherent structures via metabasins to macroscopic transport, J. Phys.: Condens. Matter., 20, Article 373101 pp., 2008
[42] Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F., Fractal free energy landscapes in structural glasses, Nature Commun., 5, 3725, 2014
[43] Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G., The energy landscapes and motions of proteins, Science, 254, 5038, 1598-1603, 1991
[44] Hyeon, C.; Thirumalai, D., Can energy landscape roughness of proteins and rna be measured by using mechanical unfolding experiments?, Proc. Natl. Acad. Sci., 100, 18, 10249-10253, 2003
[45] Nevo, R.; Brumfeld, V.; Kapon, R.; Hinterdorfer, P.; Reich, Z., Direct measurement of protein energy landscape roughness, EMBO Rep., 6, 5, 482-486, 2005
[46] Debenedetti, P. G.; Stillinger, F. H., Supercooled liquids and the glass transition, Nature, 410, 259, 2001
[47] Heuer, A.; Doliwa, B.; Saksaengwijit, A., Potential-energy landscape of a supercooled liquid and its resemblance to a collection of traps, Phys. Rev. E, 72, Article 021503 pp., 2005
[48] Archana, G. R.; Barik, D., Roughness in the periodic potential enhances transport in a driven inertial ratchet, Phys. Rev. E, 104, Article 024103 pp., 2021
[49] Archana, G. R.; Barik, D., Roughness in the periodic potential induces absolute negative mobility in a driven Brownian ratchet, Phys. Rev. E, 106, Article 044129 pp., 2022
[50] Mondal, D.; Ghosh, P. K.; Ray, D. S., Noise-induced transport in a rough ratchet potential, J. Chem. Phys., 130, 7, Article 074703 pp., 2009
[51] Zwanzig, R., Diffusion in a rough potential, Proc. Natl. Acad. Sci., 85, 7, 2029-2030, 1988
[52] Csahók, Z.; Family, F.; Vicsek, T., Transport of elastically coupled particles in an asymmetric periodic potential, Phys. Rev. E, 55, 5179-5183, 1997
[53] Kostur, M.; Hänggi, P.; Talkner, P.; Mateos, J. L., Anticipated synchronization in coupled inertial ratchets with time-delayed feedback: A numerical study, Phys. Rev. E, 72, Article 036210 pp., 2005
[54] Brugués, J.; Casademunt, J., Self-organization and cooperativity of weakly coupled molecular motors under unequal loading, Phys. Rev. Lett., 102, Article 118104 pp., 2009
[55] von Gehlen, S.; Evstigneev, M.; Reimann, P., Ratchet effect of a dimer with broken friction symmetry in a symmetric potential, Phys. Rev. E, 79, Article 031114 pp., 2009
[56] Vincent, U. E.; Nana-Nbendjo, B. R.; McClintock, P. V.E., Collective dynamics of a network of ratchets coupled via a stochastic dynamical environment, Phys. Rev. E, 87, Article 022913 pp., 2013
[57] li Ou, Y.; tian Hu, C.; chun Wu, J.; quan Ai, B., Absolute negative mobility of interacting Brownian particles, Phys. A, 439, 1-6, 2015 · Zbl 1400.82251
[58] Kohler, F.; Rohrbach, A., Synchronization of elastically coupled processive molecular motors and regulation of cargo transport, Phys. Rev. E, 91, Article 012701 pp., 2015
[59] Vincent, U. E.; Kenfack, A.; Senthilkumar, D. V.; Mayer, D.; Kurths, J., Current reversals and synchronization in coupled ratchets, Phys. Rev. E, 82, Article 046208 pp., 2010
[60] Wang, Y.; Zeng, C.; Ai, B.-Q., Anomalous transport and diffusion of coupled Brownian particles with periodic driving forces, Eur. Phys. J. Plus, 136, 10, 1071, 2021
[61] Wiśniewski, M.; Spiechowicz, J., Anomalous transport in driven periodic systems: distribution of the absolute negative mobility effect in the parameter space, New J. Phys., 24, 6, Article 063028 pp., 2022
[62] Wiśniewski, M.; Spiechowicz, J., Paradoxical nature of negative mobility in the weak dissipation regime, Chaos, 33, 6, Article 063114 pp., 2023 · Zbl 07858588
[63] Speer, D.; Eichhorn, R.; Reimann, P., Transient chaos induces anomalous transport properties of an underdamped Brownian particle, Phys. Rev. E, 76, Article 051110 pp., 2007
[64] Słapik, A.; Łuczka, J.; Spiechowicz, J., Negative mobility of a Brownian particle: strong damping regime, Commun. Nonlinear Sci. Numer. Simul., 55, 316-325, 2018
[65] Luo, Y.; Zeng, C.; Huang, T.; Ai, B.-Q., Anomalous transport tuned through stochastic resetting in the rugged energy landscape of a chaotic system with roughness, Phys. Rev. E, 106, Article 034208 pp., 2022
[66] Cubero, D.; Renzoni, F., Hidden symmetries, instabilities, and current suppression in Brownian ratchets, Phys. Rev. Lett., 116, Article 010602 pp., 2016
[67] Rozenbaum, V. M.; Shapochkina, I. V.; Teranishi, Y.; Trakhtenberg, L. I., Symmetry of deterministic ratchets, Phys. Rev. E, 100, Article 022115 pp., 2019
[68] Rozenbaum, V. M.; Korochkova, T. Y.; Shapochkina, I. V.; Trakhtenberg, L. I., Exactly solvable model of a slightly fluctuating ratchet, Phys. Rev. E, 104, Article 014133 pp., 2021
[69] Herman, A.; Ager, J. W.; Ardo, S.; Segev, G., Ratchet-based ion pumps for selective ion separations, PRX Energy, 2, Article 023001 pp., 2023
[70] Białas, K.; Łuczka, J.; Spiechowicz, J., Periodic potential can enormously boost free-particle transport induced by active fluctuations, Phys. Rev. E, 107, Article 024107 pp., 2023, URL https://link.aps.org/doi/10.1103/PhysRevE.107.024107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.