×

Nonlinear dynamics of networks: the groupoid formalism. (English) Zbl 1119.37036

Coupled cell networks arise naturally in the context of dynamical systems modeled on systems of ordinary differential equations. It is well known by now that the presence of symmetries of the network can result in interesting properties of single solutions, the phase portrait and possible bifurcations.
The present paper gives an account of a generalization of the symmetry group of a network, namely the symmetry groupoid of a network, which has been developed by the authors over the years. We are guided through their countless results and a wealth of striking applications thereof. The most important proofs can be found in [M. Golubitsky, M. Pivato and I. Stewart, Dyn. Syst. 19, No. 4, 389–407 (2004; Zbl 1067.37066)], [M. Golubitsky, I. Stewart and A. Török, SIAM J. Appl. Dyn. Syst. 4, No. 1, 78–100 (2005; Zbl 1090.34030)], and [(*) I. Stewart, M. Golubitsky and M. Pivato, SIAM J. Appl. Dyn. Syst. 2, No. 4, 609–646 (2003; Zbl 1089.34032)] of the list of references. (Unfortunately, the title of reference [(*)] is incomplete.) For an excellent summary, the reader is referred to the abstract.
We indicate where groupoids come in. For any cell (of the network), the set of cells having an arrow pointing to that cell is the input set of that cell. The elements of the symmetry groupoid of a network are the arrow type preserving bijections between the various input cells, called input isomorphisms. Thus, the groupoid consists of certain local symmetries of the network and depends only on the network architecture. Associativity (if the compositions are defined) and existence of identities and inverses, the groupoid axioms, are fulfilled. Of course, the vector fields considered must be admissible, i.e., compatible with the groupoid of the network. The results display that interesting phenomena in coupled cell networks so far attributed to global symmetry to occur in the absence of the latter and can often be traced to local symmetries.

MSC:

37G40 Dynamical aspects of symmetries, equivariant bifurcation theory
34C25 Periodic solutions to ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
20L05 Groupoids (i.e. small categories in which all morphisms are isomorphisms)
Full Text: DOI

References:

[1] Falih Aldosray and Ian Stewart, Enumeration of homogeneous coupled cell networks, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15 (2005), no. 8, 2361 – 2373. · Zbl 1092.05505 · doi:10.1142/S0218127405013368
[2] J. C. Alexander, James A. Yorke, Zhiping You, and I. Kan, Riddled basins, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 2 (1992), no. 4, 795 – 813. · Zbl 0870.58046 · doi:10.1142/S0218127492000446
[3] Fernando Antoneli, Ana Paula Dias, Martin Golubitsky, and Yunjiao Wang, Patterns of synchrony in lattice dynamical systems, Nonlinearity 18 (2005), no. 5, 2193 – 2209. · Zbl 1079.37061 · doi:10.1088/0951-7715/18/5/016
[4] Peter Ashwin, Jorge Buescu, and Ian Stewart, Bubbling of attractors and synchronisation of chaotic oscillators, Phys. Lett. A 193 (1994), no. 2, 126 – 139. · Zbl 0959.37508 · doi:10.1016/0375-9601(94)90947-4
[5] Peter Ashwin, Jorge Buescu, and Ian Stewart, From attractor to chaotic saddle: a tale of transverse instability, Nonlinearity 9 (1996), no. 3, 703 – 737. · Zbl 0887.58034 · doi:10.1088/0951-7715/9/3/006
[6] Peter Ashwin and Peter Stork, Permissible symmetries of coupled cell networks, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 1, 27 – 36. · Zbl 0816.58035 · doi:10.1017/S0305004100072364
[7] P. Ashwin and J. W. Swift, The dynamics of \? weakly coupled identical oscillators, J. Nonlinear Sci. 2 (1992), no. 1, 69 – 108. · Zbl 0872.58049 · doi:10.1007/BF02429852
[8] Norman L. Biggs, Discrete mathematics, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989. · Zbl 0682.05001
[9] J. Blaszczyk and C. Dobrzecka. Alteration in the pattern of locomotion following a partial movement restraint in puppies, Acta. Neuro. Exp. 49 (1989) 39-46.
[10] S. Boccaletti, L.M. Pecora, and A. Pelaez. A unifying framework for synchronization of coupled dynamical systems, Phys. Rev. E 63 (2001) 066219.
[11] H. Brandt, Über eine Verallgemeinerung des Gruppenbegriffes, Math. Ann. 96 (1927), no. 1, 360 – 366 (German). · doi:10.1007/BF01209171
[12] R. Brown. From groups to groupoids: a brief survey, Bull. London Math. Soc. 19 (1987) 113-134. · Zbl 0612.20032
[13] Pietro-Luciano Buono and Martin Golubitsky, Models of central pattern generators for quadruped locomotion. I. Primary gaits, J. Math. Biol. 42 (2001), no. 4, 291 – 326. · Zbl 1039.92007 · doi:10.1007/s002850000058
[14] R. Calabrese and E. Peterson. Neural control of heartbeat in the leech, Hirudo medicinalis, in Neural Origin of Rhythmic Movements , Symp. Soc. Exp. Biol. 37 (1983) 195-221.
[15] J. Cohen and I. Stewart. Polymorphism viewed as phenotypic symmetry-breaking, in: Nonlinear Phenomena in Physical and Biological Sciences , Indian National Science Academy, New Delhi, 1-67.
[16] J.J. Collins and I. Stewart. Hexapodal gaits and coupled nonlinear oscillator models, Biol. Cybern. 68 (1993) 287-298. · Zbl 0767.92015
[17] J. J. Collins and I. N. Stewart, Coupled nonlinear oscillators and the symmetries of animal gaits, J. Nonlinear Sci. 3 (1993), no. 3, 349 – 392. · Zbl 0808.92012 · doi:10.1007/BF02429870
[18] Ana Paula S. Dias and Ian Stewart, Symmetry groupoids and admissible vector fields for coupled cell networks, J. London Math. Soc. (2) 69 (2004), no. 3, 707 – 736. · Zbl 1049.37009 · doi:10.1112/S0024610704005241
[19] Ana Paula S. Dias and Ian Stewart, Linear equivalence and ODE-equivalence for coupled cell networks, Nonlinearity 18 (2005), no. 3, 1003 – 1020. · Zbl 1079.37010 · doi:10.1088/0951-7715/18/3/004
[20] Benoit Dionne, Martin Golubitsky, and Ian Stewart, Coupled cells with internal symmetry. I. Wreath products, Nonlinearity 9 (1996), no. 2, 559 – 574. · Zbl 0894.58049 · doi:10.1088/0951-7715/9/2/016
[21] Benoit Dionne, Martin Golubitsky, and Ian Stewart, Coupled cells with internal symmetry. II. Direct products, Nonlinearity 9 (1996), no. 2, 575 – 599. · Zbl 0894.58050 · doi:10.1088/0951-7715/9/2/017
[22] R. Dobrin, Q.K. Beg, A.-L. Barabási, and Z.N. Oltvai. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network, BMC Bioinformatics 5 (2004) 1471-2105/5/10.
[23] T. Elmhirst. Symmetry and Emergence in Polymorphism and Sympatric Speciation, Ph.D. Thesis, Math. Inst., U. Warwick, 2002.
[24] T. Elmhirst and M. Golubitsky. Nilpotent Hopf bifurcations in coupled cell systems, SIAM J. Appl. Dynam. Sys. 5 (2006). To appear. · Zbl 1141.34324
[25] Irving R. Epstein and Martin Golubitsky, Symmetric patterns in linear arrays of coupled cells, Chaos 3 (1993), no. 1, 1 – 5. · Zbl 1055.80505 · doi:10.1063/1.165974
[26] Martin Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks, Arch. Rational Mech. Anal. 132 (1995), no. 4, 311 – 370. · Zbl 0853.92024 · doi:10.1007/BF00375614
[27] Michael Field, Lectures on bifurcations, dynamics and symmetry, Pitman Research Notes in Mathematics Series, vol. 356, Longman, Harlow, 1996. · Zbl 0857.58013
[28] R. FitzHugh. Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1 (1961) 445-466.
[29] P.P. Gambaryan. How Mammals Run: Anatomical Adaptations, Wiley, New York, 1974.
[30] David Gillis and Martin Golubitsky, Patterns in square arrays of coupled cells, J. Math. Anal. Appl. 208 (1997), no. 2, 487 – 509. · Zbl 0889.34033 · doi:10.1006/jmaa.1997.5347
[31] M. Golubitsky, K. Josic, and E. Shea-Brown. Rotation, oscillation and spike numbers in phase oscillator networks, J. Nonlinear Sci. To appear. · Zbl 1130.37345
[32] M. Golubitsky, M. Nicol, and I. Stewart, Some curious phenomena in coupled cell networks, J. Nonlinear Sci. 14 (2004), no. 2, 207 – 236. · Zbl 1136.37359 · doi:10.1007/s00332-003-0593-6
[33] M. Golubitsky, M. Pivato, and I. Stewart, Interior symmetry and local bifurcation in coupled cell networks, Dyn. Syst. 19 (2004), no. 4, 389 – 407. · Zbl 1067.37066 · doi:10.1080/14689360512331318006
[34] Martin Golubitsky and David G. Schaeffer, Singularities and groups in bifurcation theory. Vol. I, Applied Mathematical Sciences, vol. 51, Springer-Verlag, New York, 1985. · Zbl 0607.35004
[35] Martin Golubitsky and Ian Stewart, Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators, Multiparameter bifurcation theory (Arcata, Calif., 1985) Contemp. Math., vol. 56, Amer. Math. Soc., Providence, RI, 1986, pp. 131 – 173. · Zbl 0602.58038 · doi:10.1090/conm/056/855088
[36] Martin Golubitsky and Ian Stewart, Symmetry and pattern formation in coupled cell networks, Pattern formation in continuous and coupled systems (Minneapolis, MN, 1998) IMA Vol. Math. Appl., vol. 115, Springer, New York, 1999, pp. 65 – 82. · Zbl 0987.37041 · doi:10.1007/978-1-4612-1558-5_6
[37] Martin Golubitsky and Ian Stewart, The symmetry perspective, Progress in Mathematics, vol. 200, Birkhäuser Verlag, Basel, 2002. From equilibrium to chaos in phase space and physical space. · Zbl 1031.37001
[38] Martin Golubitsky, Ian Stewart, Pietro-Luciano Buono, and J. J. Collins, A modular network for legged locomotion, Phys. D 115 (1998), no. 1-2, 56 – 72. · Zbl 1039.92009 · doi:10.1016/S0167-2789(97)00222-4
[39] M. Golubitsky, I. Stewart, P.-L. Buono, and J.J. Collins. Symmetry in locomotor central pattern generators and animal gaits, Nature 401 (1999) 693-695.
[40] Martin Golubitsky, Ian Stewart, and Benoit Dionne, Coupled cells: wreath products and direct products, Dynamics, bifurcation and symmetry (Cargèse, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 437, Kluwer Acad. Publ., Dordrecht, 1994, pp. 127 – 138. · Zbl 0810.34028
[41] Martin Golubitsky, Ian Stewart, and David G. Schaeffer, Singularities and groups in bifurcation theory. Vol. II, Applied Mathematical Sciences, vol. 69, Springer-Verlag, New York, 1988. · Zbl 0691.58003
[42] Martin Golubitsky, Ian Stewart, and Andrei Török, Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 1, 78 – 100. · Zbl 1090.34030 · doi:10.1137/040612634
[43] M. Gabriela M. Gomes and Graham F. Medley, Dynamics of multiple strains of infectious agents coupled by cross-immunity: a comparison of models, Mathematical approaches for emerging and reemerging infectious diseases: models, methods, and theory (Minneapolis, MN, 1999) IMA Vol. Math. Appl., vol. 126, Springer, New York, 2002, pp. 171 – 191. · Zbl 1023.92025 · doi:10.1007/978-1-4613-0065-6_10
[44] S. Grillner, D. Parker, and A.J. El Manira. Vertebrate locomotion–a lamprey perspective, Ann. New York Acad. Sci. 860 (1998) 1-18.
[45] S. Grillner and P. Wallén. Central pattern generators for locomotion, with special reference to vertebrates, Ann. Rev. Neurosci 8 (1985) 233-261.
[46] B. Gucciardi. Thesis, University of Houston, 2006. In preparation.
[47] Philip J. Higgins, Notes on categories and groupoids, Van Nostrand Reinhold Co., London-New York-Melbourne, 1971. Van Nostrand Rienhold Mathematical Studies, No. 32. · Zbl 0226.20054
[48] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[49] Frank C. Hoppensteadt and Eugene M. Izhikevich, Weakly connected neural networks, Applied Mathematical Sciences, vol. 126, Springer-Verlag, New York, 1997. · Zbl 0887.92003
[50] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. · Zbl 0878.58020
[51] N. Kopell and G. B. Ermentrout, Symmetry and phaselocking in chains of weakly coupled oscillators, Comm. Pure Appl. Math. 39 (1986), no. 5, 623 – 660. · Zbl 0596.92011 · doi:10.1002/cpa.3160390504
[52] N. Kopell and G. B. Ermentrout, Coupled oscillators and the design of central pattern generators, Math. Biosci. 90 (1988), no. 1-2, 87 – 109. Nonlinearity in biology and medicine (Los Alamos, NM, 1987). · Zbl 0649.92009 · doi:10.1016/0025-5564(88)90059-4
[53] N. Kopell and G. LeMasson. Rhythmogenesis, amplitude modulation, and multiplexing in a cortical architecture, Proc. Natl. Acad. Sci. USA 91 (1994) 10586-10590.
[54] Y. Kuramoto, Chemical oscillations, waves, and turbulence, Springer Series in Synergetics, vol. 19, Springer-Verlag, Berlin, 1984. · Zbl 0558.76051
[55] Luiz A. Ferreira and Erica E. Leite, Integrable theories in any dimension and homogenous [homogeneous] spaces, Nuclear Phys. B 547 (1999), no. 3, 471 – 500. · Zbl 0944.37043 · doi:10.1016/S0550-3213(99)00090-5
[56] M. Leite and M. Golubitsky. Homogeneous three-cell networks. Nonlinearity. Submitted. · Zbl 1114.34035
[57] S.C. Manrubia, A.S. Mikhailov, and D.H. Zanette, Emergence of Dynamical Order, World Scientific, Singapore, 2004. · Zbl 1119.34001
[58] John Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1985), no. 2, 177 – 195. John Milnor, Correction and remarks: ”On the concept of attractor”, Comm. Math. Phys. 102 (1985), no. 3, 517 – 519. · Zbl 0595.58028
[59] R. Milo, S. Shen-Orr, S. Itkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple building blocks of complex networks, Science 298 (2002) 824.
[60] Erik Mosekilde, Yuri Maistrenko, and Dmitry Postnov, Chaotic synchronization, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 42, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. Applications to living systems. · Zbl 0999.37022
[61] J.S. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating nerve axon, Proc. IRE 50 (1962) 2061-2071.
[62] A.-M. Neutel, J.A.P. Heesterbeek, and P.C. de Ruiter. Stability in real food webs: weak links in long loops, Science 96 (2002) 1120-1123.
[63] M. E. J. Newman, The structure and function of complex networks, SIAM Rev. 45 (2003), no. 2, 167 – 256. · Zbl 1029.68010 · doi:10.1137/S003614450342480
[64] O.H. Olsen and R.L. Calabrese. Activation of intrinsic and synaptic currents in leech heart interneurons by realistic waveforms, J. Neuroscience 16 4958-4970.
[65] Z.N. Oltvai and A.-L. Barabási. Life’s complexity pyramid, Science 298 (2002) 763-764.
[66] E. Ott and J.C. Sommerer. Blowout bifurcations: the occurrence of riddled basins and on-off intermittency, Phys. Lett. A 188 (1994) 39-47.
[67] Heinz-Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe, Chaos and fractals, Springer-Verlag, New York, 1992. New frontiers of science; With a foreword by Mitchell J. Feigenbaum; Appendix A by Yuval Fisher; Appendix B by Carl J. G. Evertsz and Benoit B. Mandelbrot. · Zbl 0779.58004
[68] N. Platt, E.A. Spiegel, and C. Tresser. On-off intermittency: a mechanism for bursting, Phys. Rev. Lett. 70 (1993) 279-282.
[69] O.E. Rössler. An equation for continuous chaos, Phys. Lett. 57A (1976) 397-398. · Zbl 1371.37062
[70] W. Singer. Neuronal synchrony: a versatile code for the definition of relations, Neuron 24 (1999) 49-65.
[71] Ian Stewart, Toby Elmhirst, and Jack Cohen, Symmetry-breaking as an origin of species, Bifurcation, symmetry and patterns (Porto, 2000) Trends Math., Birkhäuser, Basel, 2003, pp. 3 – 54. · Zbl 1041.92020
[72] Ian Stewart, Martin Golubitsky, and Marcus Pivato, Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst. 2 (2003), no. 4, 609 – 646. · Zbl 1089.34032 · doi:10.1137/S1111111103419896
[73] I. Stewart and M. Parker. Periodic dynamics of coupled cell networks I: rigid patterns of synchrony. Preprint. · Zbl 1162.37312
[74] I. Stewart and M. Parker. Periodic dynamics of coupled cell networks II: cyclic symmetry. Preprint. · Zbl 1162.37010
[75] I. Stewart and M. Parker. Periodic dynamics of coupled cell networks III: rigid phase patterns. Preprint. · Zbl 1162.37312
[76] W. T. Tutte, Graph theory, Encyclopedia of Mathematics and its Applications, vol. 21, Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. With a foreword by C. St. J. A. Nash-Williams. · Zbl 0554.05001
[77] J.J. Tyson, K.C. Chen, and B. Novak. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell Biol. 15 (2003) 221-231.
[78] J.J. Tyson, A. Csikasz-Nagy, and B. Novak. The dynamics of cell cycle regulation, BioEssays 24 (2002) 1095-1109.
[79] T.L. Vincent and T.L.S. Vincent. Evolution and control system design, IEEE Control Systems Magazine (October 2000) 20-35.
[80] Xiao Fan Wang, Complex networks: topology, dynamics and synchronization, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 5, 885 – 916. Chaos control and synchronization (Shanghai, 2001). · Zbl 1044.37561 · doi:10.1142/S0218127402004802
[81] Yunjiao Wang and Martin Golubitsky, Two-colour patterns of synchrony in lattice dynamical systems, Nonlinearity 18 (2005), no. 2, 631 – 657. · Zbl 1066.34049 · doi:10.1088/0951-7715/18/2/010
[82] D.J. Watts and S.H. Strogatz. Collective dynamics of small-world networks, Nature 393 440-442. · Zbl 1368.05139
[83] Alan Weinstein, Groupoids: unifying internal and external symmetry. A tour through some examples, Notices Amer. Math. Soc. 43 (1996), no. 7, 744 – 752. · Zbl 1044.20507
[84] Robin J. Wilson, Introduction to graph theory, 3rd ed., Longman, New York, 1985. · Zbl 0653.05020
[85] D.M. Wolf and A.P. Arkin. Motifs, modules, and games in bacteria, Current Opinion in Microbiol. 6 (2003) 125-134.
[86] D. Wood. Coupled Oscillators with Internal Symmetries, Ph.D. Thesis, Univ. Warwick, 1995.
[87] David Wood, Hopf bifurcations in three coupled oscillators with internal \?\(_{2}\) symmetries, Dynam. Stability Systems 13 (1998), no. 1, 55 – 93. · Zbl 0936.34031 · doi:10.1080/02681119808806254
[88] David Wood, A cautionary tale of coupling cells with internal symmetries, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 11 (2001), no. 1, 123 – 132. · Zbl 1091.37513 · doi:10.1142/S0218127401001980
[89] Chai Wah Wu, Synchronization in coupled chaotic circuits and systems, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 41, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. · Zbl 1007.34044
[90] Chai Wah Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity 18 (2005), no. 3, 1057 – 1064. · Zbl 1089.37024 · doi:10.1088/0951-7715/18/3/007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.