×

Entropic contribution to phenotype fitness. (English) Zbl 1519.92137

Summary: All possible phenotypes are not equally accessible to evolving populations. In fact, only phenotypes of large size, i.e. those resulting from many different genotypes, are found in populations of sequences, presumably because they are easier to discover and maintain. Genotypes that map to these phenotypes usually form mostly connected genotype networks that percolate the space of sequences, thus guaranteeing access to a large set of alternative phenotypes. Within a given environment, where specific phenotypic traits become relevant for adaptation, the replicative ability of a phenotype and its overall fitness (in competition experiments with alternative phenotypes) can be estimated. Two primary questions arise: how do phenotype size, reproductive capability and topology of the genotype network affect the fitness of a phenotype? And, assuming that evolution is only able to access large phenotypes, what is the range of unattainable fitness values? In order to address these questions, we quantify the adaptive advantage of phenotypes of varying size and spectral radius in a two-peak landscape. We derive analytical relationships between the three variables (size, topology, and replicative ability) which are then tested through analysis of genotype-phenotype maps and simulations of population dynamics on such maps. Finally, we analytically show that the fraction of attainable phenotypes decreases with the length of the genotype, though its absolute number increases. The fact that most phenotypes are not visible to evolution very likely forbids the attainment of the highest peak in the landscape. Nevertheless, our results indicate that the relative fitness loss due to this limited accessibility is largely inconsequential for adaptation.

MSC:

92D10 Genetics and epigenetics

Software:

DLMF

References:

[1] Stadler, P. F.; Stadler, B. M R., Biol. Theory, 1, 268-79 (2006) · doi:10.1162/biot.2006.1.3.268
[2] Ahnert, S. E., J. R. Soc. Interface, 14 (2017) · doi:10.1098/rsif.2017.0275
[3] Manrubia, S., Phys. Life Rev., 38, 55-106 (2021) · doi:10.1016/j.plrev.2021.03.004
[4] Ogbunugafor, C. B., Genetics, 214, 749-54 (2020) · doi:10.1534/genetics.119.302764
[5] Louis, A. A., Stud. Hist. Phil. Sci. C, 58, 107-16 (2016) · doi:10.1016/j.shpsc.2015.12.014
[6] Bastolla, U.; Porto, M.; Roman, H. E.; Vendruscolo, M., J. Mol. Biol., 56, 243-54 (2003) · doi:10.1007/s00239-002-2350-0
[7] Ciliberti, S.; Martin, O. C.; Wagner, A., Proc. Natl Acad. Sci. USA, 104, 13595-6 (2007) · doi:10.1073/pnas.0705396104
[8] Matias Rodrigues, J. F.; Wagner, A., BMC Syst. Biol., 5, 39 (2011) · doi:10.1186/1752-0509-5-39
[9] Schultes, E. A.; Bartel, D. P., Science, 289, 448-52 (2000) · doi:10.1126/science.289.5478.448
[10] Aguirre, J.; Buldú, J. M.; Stich, M.; Manrubia, S. C., PLoS One, 6 (2011) · doi:10.1371/journal.pone.0026324
[11] Yubero, P.; Manrubia, S.; Aguirre, J., Sci. Rep., 7 (2017) · doi:10.1038/s41598-017-14048-x
[12] Aguirre, J.; Catalán, P.; Cuesta, J. A.; Manrubia, S., Open Biol., 8 (2018) · doi:10.1098/rsob.180069
[13] Dingle, K.; Schaper, S.; Louis, A. A., Interface Focus, 5 (2015) · doi:10.1098/rsfs.2015.0053
[14] Cuesta, J. A.; Manrubia, S., J. Theor. Biol., 419, 375-82 (2017) · Zbl 1370.92121 · doi:10.1016/j.jtbi.2017.02.024
[15] Catalán, P.; Wagner, A.; Manrubia, S.; Cuesta, J. A., J. R. Soc. Interface, 15 (2018) · doi:10.1098/rsif.2017.0516
[16] Garcia-Martin, J. A.; Catalán, P.; Cuesta, J. A.; Manrubia, S., Europhys. Lett., 123 (2018) · doi:10.1209/0295-5075/123/28001
[17] Villanueva, A.; Secaira-Morocho, H.; Seoane, L. F.; Lázaro, E.; Manrubia, S., Biophysica, 2, 381-99 (2022) · doi:10.3390/biophysica2040034
[18] Jörg, T.; Martin, O. C.; Wagner, A., BMC Bioinform., 9, 464 (2008) · doi:10.1186/1471-2105-9-464
[19] Wagner, A., Proc. R. Soc. B, 281 (2014) · doi:10.1098/rspb.2013.2763
[20] Greenbury, S. F.; Schaper, S.; Ahnert, S. E.; Louis, A. A., PLoS Comput. Biol., 12 (2016) · doi:10.1371/journal.pcbi.1004773
[21] Greenbury, S. F.; Johnston, I. G.; Louis, A. A.; Ahnert, S. E., J. R. Soc. Interface, 11 (2014) · doi:10.1098/rsif.2014.0249
[22] Catalán, P.; Arias, C. F.; Cuesta, J. A.; Manrubia, S., Biol. Direct, 12, 7 (2017) · doi:10.1186/s13062-017-0178-1
[23] Dall’Olio, G. M.; Bertranpetit, J.; Wagner, A.; Laayouni, H., PLoS One, 9 (2014) · doi:10.1371/journal.pone.0099424
[24] Wright, S., vol 1, pp 356-66 (1932)
[25] Mustonen, V.; Lässig, M., Trends Genet., 25, 111-9 (2009) · doi:10.1016/j.tig.2009.01.002
[26] Laland, K., Nature, 514, 161-4 (2014) · doi:10.1038/514161a
[27] Svensson, E. I.; Calsbeek, R., The Adaptive Landscape in Evolutionary Biology (2012), Oxford University Press)
[28] Aguirre, J., Nat. Ecol. Evol., 6, 1599-600 (2022) · doi:10.1038/s41559-022-01877-x
[29] Schuster, P.; Swetina, J., Bull. Math. Biol., 50, 635-60 (1988) · Zbl 0668.92009 · doi:10.1016/S0092-8240(88)80059-4
[30] Wolff, A.; Krug, J., Phys. Biol., 6 (2009) · doi:10.1088/1478-3975/6/3/036007
[31] Khatri, B. S.; McLeish, T. C B.; Sear, R. P., Proc. Natl Acad. Sci. USA, 106, 9564-9 (2009) · doi:10.1073/pnas.0812260106
[32] Wilke, C. O.; Wang, J. L.; Ofria, C.; Lenski, R. E.; Adami, C., Nature, 412, 331-3 (2001) · doi:10.1038/35085569
[33] Codoñer, F. M.; Darós, J. A.; Solé, R. V.; Elena, S. F., PLoS Pathog., 2, e136 (2006) · doi:10.1371/journal.ppat.0020136
[34] Cowperthwaite, M. C.; Meyers, L. A., Annu. Rev. Ecol. Syst., 38, 203-30 (2007) · doi:10.1146/annurev.ecolsys.38.091206.095507
[35] Schaper, S.; Louis, A. A., PLoS One, 9 (2014) · doi:10.1371/journal.pone.0086635
[36] Catalán, P.; Manrubia, S.; Cuesta, J. A., J. R. Soc. Interface, 17 (2020) · doi:10.1098/rsif.2019.0843
[37] Fontana, W.; Konings, D. A.; Stadler, P. F.; Schuster, P., Biopolymers, 33, 1389-404 (1993) · doi:10.1002/bip.360330909
[38] Ancel, L. W.; Fontana, W., J. Exp. Zool., 288, 242-83 (2000) · doi:10.1002/1097-010X(20001015)288:33.0.CO;2-O
[39] Schuster, P., Rep. Prog. Phys., 69, 1419-77 (2006) · doi:10.1088/0034-4885/69/5/R04
[40] Arias, C. F.; Catalán, P.; Manrubia, S.; Cuesta, J. A., Sci. Rep., 4, 7549 (2014) · doi:10.1038/srep07549
[41] Catalán, P2017Models in molecular evolution: the case of toyLIFEPhD ThesisUniversidad Carlos III
[42] Aguirre, J.; Buldú, J. M.; Manrubia, S. C., Phys. Rev. E, 80 (2009) · doi:10.1103/PhysRevE.80.066112
[43] Aguirre, J.; Papo, D.; Buldú, J. M., Nat. Phys., 9, 230-4 (2013) · doi:10.1038/nphys2556
[44] Aguirre, J.; Manrubia, S., Sci. Rep., 5, 9664 (2015) · doi:10.1038/srep09664
[45] Capitán, J. A.; Aguirre, J.; Manrubia, S., Chaos Solitons Fractals, 72, 99-106 (2015) · Zbl 1352.92099 · doi:10.1016/j.chaos.2014.11.019
[46] van Nimwegen, E.; Crutchfield, J. P.; Huynen, M., Proc. Natl Acad. Sci. USA, 96, 9716-20 (1999) · doi:10.1073/pnas.96.17.9716
[47] Wagner, A., The Origins of Evolutionary Innovations (2011), Oxford University Press)
[48] Manrubia, S.; Cuesta, J. A., J. R. Soc. Interface, 14 (2017) · doi:10.1098/rsif.2016.0976
[49] Martin, N. S.; Ahnert, S. E., J. R. Soc. Interface, 19 (2022) · doi:10.1098/rsif.2022.0072
[50] Huynen, M. A., J. Mol. Evol., 43, 165-9 (1996) · doi:10.1007/BF02338823
[51] Reidys, C. M.; Forst, C. V.; Stadler, P. F., Bull. Math. Biol., 63, 57-94 (2001) · Zbl 1323.92151 · doi:10.1006/bulm.2000.0206
[52] Reidys, C. M., Combinatorial Computational Biology of RNA (2002), Springer)
[53] Poznanović, S.; Heitsch, C. E., J. Math. Biol., 69, 1743-72 (2014) · Zbl 1320.92065 · doi:10.1007/s00285-013-0750-y
[54] Li, H.; Helling, R.; Tang, C.; Wingreen, N., Science, 273, 666-9 (1996) · doi:10.1126/science.273.5275.666
[55] Kin, T.; Yamada, K.; Terai, G.; Okida, H.; Yoshinari, Y.; Ono, Y.; Kojima, A.; Kimura, Y.; Komori, T.; Asai, K., Nucleic Acids Res., 35, D145-8 (2007) · doi:10.1093/nar/gkl837
[56] Diener, T. O., Virology, 45, 411-28 (1971) · doi:10.1016/0042-6822(71)90342-4
[57] Flores, R.; Serra, P.; Minoia, S.; Serio, F. D.; Navarro, B., Front. Microbiol., 3, 217 (2012) · doi:10.3389/fmicb.2012.00217
[58] Catalán, P.; Elena, S. F.; Cuesta, J. A.; Manrubia, S., Viruses, 11, 425 (2019) · doi:10.3390/v11050425
[59] Olver, F. W J.; Olde Daalhuis, A. B.; Lozier, D. W.; Schneider, B. I.; Boisvert, R. F.; Clark, C. W.; Miller, B. R.; Saunders, B. V.; Cohl, H. S.; McClain, M. A., NIST Digital Library of Mathematical Functions (2023)
[60] Stein, P.; Waterman, M., Discrete Math., 26, 261-72 (1979) · Zbl 0405.10009 · doi:10.1016/0012-365X(79)90033-5
[61] Schuster, P.; Fontana, W.; Stadler, P. F.; Hofacker, I. L., Proc. R. Soc. B, 255, 279-84 (1994) · doi:10.1098/rspb.1994.0040
[62] Mills, D. R.; Peterson, R. L.; Spiegelman, S., Proc. Natl Acad. Sci. USA, 58, 217-24 (1967) · doi:10.1073/pnas.58.1.217
[63] Muniz, L.; Nicolas, E.; Trouche, D., EMBO J., 40 (2021) · doi:10.15252/embj.2020105740
[64] de Haan, L.; Ferreira, A., Extreme Value Theory: An Introduction (2006), Springer) · Zbl 1101.62002
[65] Eldredge, N.; Gould, S. J.; Schopf, T. J M., Punctuated equilibria: an alternative to phyletic gradualism, Models in Paleobiology, pp 82-115 (1972), (Freeman Cooper)
[66] Huynen, M. A.; Stadler, P. F.; Fontana, W., Proc. Natl Acad. Sci. USA, 93, 397-401 (1996) · doi:10.1073/pnas.93.1.397
[67] Wilke, C. O., Bull. Math. Biol., 63, 715-30 (2001) · Zbl 1323.92144 · doi:10.1006/bulm.2001.0244
[68] Koelle, K.; Cobey, S.; Grenfell, B.; Pascual, M., Science, 314, 1898-903 (2006) · doi:10.1126/science.1132745
[69] Dingle, K.; Camargo, C. Q.; Louis, A. A., Nat. Commun., 9, 1-7 (2018) · doi:10.1038/s41467-018-03101-6
[70] Johnston, I. G.; Dingle, K.; Greenbury, S. F.; Camargo, C. Q.; Jonathan, P. K D.; Ahnert, S. E.; Louis, A. A., Proc. Natl Acad. Sci. USA, 119 (2022) · doi:10.1073/pnas.2113883119
[71] Dingle, K.; Novev, J. K.; Ahnert, S. E.; Louis, A. A., J. R. Soc. Interface, 19 (2022) · doi:10.1098/rsif.2022.0694
[72] Dawkins, R., Climbing Mount Improbable (1996), Norton
[73] Cuypers, T. D.; Hogeweg, P., Genome Biol. Evol., 4, 212-29 (2012) · doi:10.1093/gbe/evr141
[74] Cuypers, T. D.; Hogeweg, P., PLoS Comput. Biol., 10 (2014) · doi:10.1371/journal.pcbi.1003547
[75] Colizzi, E. S.; Hogeweg, P., Genome Biol. Evol., 6, 1990-2007 (2014) · doi:10.1093/gbe/evu150
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.