×

Stochastic resonance in coupled star-networks with power-law heterogeneity. (English) Zbl 07462290

Summary: In this paper, the power-law heterogeneity of the coupling coefficients is proved to have an important influence on the output signal-to-noise ratio (SNR) of the central oscillator in coupled star-network. The network is described by dimensionless Langevin equations subjected to periodic forces and additive noise in a symmetric bistable potential. Creatively, a random variable with power-law-like distribution is constructed to model the heterogeneity of coupling coefficients. It is revealed that the degree of heterogeneity of coupling coefficients can be measured by the entropy of random variables. In numerical simulation, the output SNR of the central oscillator is obtained to divide the two-dimensional parameter space into four regions of resonance, non-resonance, sub-resonance and super-resonance. In each region, the monotonicity of output SNR curves is discussed to determine the optimal SNR and the corresponding power exponent. At last, an explanation of physical mechanism is given based on the stochastic resonance (SR) theory.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Albert, R.; Barabasi, A. L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 1, 47-49 (2002) · Zbl 1205.82086
[2] Albert, R.; Jeong, H.; Barabasi, A. L., Error and attack tolerance of complex networks, Nature, 406, 6794, 378-382 (2005)
[3] Liu, Y.; Li, C.; Tang, W.; Zhang, Z., Distributed estimation over complex networks, Inform. Sci., 197, 91-104 (2012) · Zbl 1337.68029
[4] Newman, M., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256 (2003) · Zbl 1029.68010
[5] Newman, M., The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98, 2, 404-409 (2001) · Zbl 1065.00518
[6] Newman, M.; Strogatz, S.; Watts, D., Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 2, Article 026118 pp. (2001)
[7] Ribeiro, H.; Alves, L.; Martins, A.; Lenzi, E.; Perc, M., The dynamical structure of political corruption networks, J. Complex Netw., 6, 6, 989-1003 (2018)
[8] Liao, H.; Shen, J.; Wu, X.; Chen, B.; Zhou, M., Empirical topological investigation of practical supply chains based on complex networks, Chin. Phys. B, 26, 11, Article 110505 pp. (2017)
[9] Yang, Y.; Hu, M.; Huang, T., Influential nodes identification in complex networks based on global and local information, Chin. Phys. B, 29, 8, Article 088903 pp. (2020)
[10] Bollobás, B., Modern Graph Theory, 39-66 (1998), Springer: Springer New York · Zbl 0902.05016
[11] West, D., Introduction to Graph Theory, 4-9 (1996), Prentice Hall: Prentice Hall Upper Saddle River, NJ · Zbl 0845.05001
[12] Diestel, R., Graph Theory, 18-21 (2005), Springer: Springer New York · Zbl 1074.05001
[13] Wang, J.; Zhang, Y., Network synchronization in a population of star-coupled fractional nonlinear oscillators, Phys. Lett. A, 374, 13, 1464-1468 (2010) · Zbl 1236.05188
[14] Tan, J.; Zou, X., Complex dynamical analysis of a coupled network from innate tmmune responses, Int. J. Bifurcation Chaos, 23, 11, Article 1350180 pp. (2013) · Zbl 1284.34084
[15] Röhm, A.; Böhm, F.; Lüdge, K., Small chimera states without multistability in a globally delay-coupled network of four lasers, Phys. Rev. E, 94, 4, Article 042204 pp. (2016)
[16] Qi, X.; Bao, H.; Cao, J., Synchronization criteria for quaternion-valued coupled neural networks with impulses, Neural Netw., 128, 150-157 (2020) · Zbl 1471.93225
[17] Johnson, C.; Flage, R.; Guikema, S., Characterising the robustness of coupled power-law networks, Reliab. Eng. Syst. Saf., 191, Article 106560 pp. (2019)
[18] Goychuk, I.; Kharchenko, V.; Metzler, R., Molecular motors pulling cargos in the viscoelastic cytosol: how power strokes beat subdiffusion, Phys. Chem. Chem. Phys., 16, 16524-16535 (2014)
[19] Rossello, J.; Deza, R.; Wio, H., Coupled Brownian motors, Eur. Phys. J. B, 91, 103-107 (2018)
[20] Gao, T.; Fan, L.; Chen, J.; Zheng, Z., The enhancement of energy conversion efficiency and current reversal in the feedback coupled ratchets subject to harmonic forces, J. Stat. Mech. Mech., 1, Article 013211 pp. (2019)
[21] He, D.; Stone, L., Spatio-temporal synchronization of recurrent epidemics, Proc. R. Soc. Lond. Ser. B, 270, 1519-1526 (2003)
[22] Izhikevich, E., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (2007), MIT Press: MIT Press Cambridge, MA
[23] Gao, S.; Wang, H.; Yuan, X.; Lin, L., Cooperative mechanism of SME growth in the mesoscopic structure with strategic and nonstrategic partners, IEEE Intell. Syst., 35, 7-18 (2020)
[24] Konishi, K.; Kokame, H., Synchronization of pulse-coupled oscillators with a refractory period and frequency distribution for a wireless sensor network, Chaos, 18, Article 033132 pp. (2008) · Zbl 1309.34097
[25] Xu, C.; Sun, Y.; Gao, J.; Jia, W.; Zheng, Z., Phase transition in coupled star networks, Nonlinear Dynam., 94, 1-9 (2018)
[26] Bergner, A.; Frasca, M.; Sciuto, G.; Buscarino, A.; Ngamga, E.; Fortuna, L.; Kurths, J., Remote synchronization in star networks, Phys. Rev. E, 85, Article 026208 pp. (2012)
[27] Burylko, O.; Kazanovich, Y.; Borisyuk, R., Bifurcations in phase oscillator networks with a central element, Physica D, 241, 1072-1089 (2012) · Zbl 1300.34079
[28] Theesar, S.; Ariffin, M.; Banerjee, S., Synchronization and a secure communication scheme using optical star network, Opt. Laser Technol., 54, 15-21 (2013)
[29] Vlasov, V.; Pikovsky, A.; Macau, E., Star-type oscillatory networks with generic kuramoto-type coupling: a model for Japanese drums synchrony, Chaos, 25, Article 123120 pp. (2015) · Zbl 1374.34123
[30] Zhang, L.; Xu, L.; Yu, T.; Lai, L.; Zhong, S., Collective behavior of a nearest neighbor coupled system in a dichotomous fluctuating potential, Commun. Nonlinear Sci., 93, Article 105499 pp. (2021) · Zbl 1453.82068
[31] Lin, L.; Yu, L.; Lv, W.; Wang, H., Ratchet motion and current reversal of Brownian motors coupled by birth-death interactions in the crowded environment, Chin. J. Phys., 68, 808-819 (2020)
[32] Benzi, R.; Sutera, A.; Vulpiani, A., The mechanism of stochastic resonance, J. Phys. A, 14, 11, 453-457 (1981)
[33] Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A., Stochastic resonance in climatic change, Tellus, 34, 1, 10-16 (1982)
[34] Tessone, C.; Mirasso, C.; Toral, R.; Gunton, J., Diversity-induced resonance, Phys. Rev. Lett., 97, 19, Article 194101 pp. (2006)
[35] Ngouongo, Y.; Kenmoe, G.; Kofane, T., Effect of coupling on stochastic resonance and stochastic antiresonance processes in a unidirectionally-coupled systems in periodic sinusoidal potential, Physica A, 472, 25-31 (2017) · Zbl 1400.82177
[36] Wu, D.; Zhu, S.; Luo, X., Cooperative effects of random time delays and small-world topologies on diversity-induced resonance, Europhys. Lett., 86, 5, 50002 (2009)
[37] Perc, M., Stochastic resonance on weakly paced scale-free networks, Phys. Rev. E, 78, 3, Article 036105 pp. (2008)
[38] Perc, M.; Gosak, M., Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators, New. J. Phys., 10, 5, Article 053008 pp. (2008)
[39] Wang, Q.; Perc, M.; Duan, Z.; Chen, G., Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E, 80, 2, Article 026206 pp. (2009)
[40] Yu, H.; Guo, X.; Wang, J., Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay, Commun. Nonlinear Sci., 42, 532-544 (2017) · Zbl 1473.92011
[41] Pérez, T.; Mirasso, C.; Toral, R.; Gunton, J., The constructive role of diversity in the global response of coupled neuron systems, Phil. Trans. R. Soc. A, 368, 1933, 5619-5632 (2010) · Zbl 1211.37114
[42] Vaz Martins, T.; Livina, V.; Majtey, A.; Toral, R., Resonance induced by repulsive interactions in a model of globally coupled bistable systems, Phys. Rev. E, 81, 4, Article 041103 pp. (2010)
[43] Pikovsky, A.; Zaikin, A.; Casa, M., System size resonance in coupled noisy systems and in the Ising mode, Phys. Rev. Lett., 88, 5, Article 050601 pp. (2002)
[44] Cubero, D., Finite-size fluctuations and stochastic resonance in globally coupled bistable systems, Phys. Rev. E, 77, 2, Article 021112 pp. (2008)
[45] Bouzat, S.; Wio, S., Stochastic resonance in extended bistable systems: The role of potential symmetry, Phys. Rev. E, 59, 5, 5142-5149 (1999)
[46] Lin, L.; Yuan, G.; Wang, H.; Xie, J., The stochastic incentive effect of venture capital in partnership systems with the asymmetric bistable Cobb-Douglas utility, Commun. Nonlinear Sci., 66, 109-128 (2019) · Zbl 1508.91626
[47] Li, X.; Chen, K.; Yuan, G.; Wang, H., The decision-making of optimal equity and capital structure based on dynamical risk profiles: A Langevin system framework for SME growth, Int. J. Intell. Syst., 1-24 (2021)
[48] Guerin, T.; Prost, J.; Martin, P.; Joanny, J., Coordination and collective properties of molecular motors: theory, Curr. Opin. Cell. Biol., 22, 1, 14-20 (2010)
[49] Toral, R.; Tessone, C.; Lopes, C., Collective effects induced by diversity in extended systems, Eur. Phys. J. Spec. Top., 143, 59-67 (2007)
[50] Yao, C.; Zhao, Q.; Liu, W.; Yu, J., Collective dynamics induced by diversity taken from two-point distribution in globally coupled chaotic oscillators, Nonlinear Dynam., 75, 17-26 (2014) · Zbl 1281.34053
[51] Hu, H.; Wang, X., Unified index to quantifying heterogeneity of complex networks, Physica A, 387, 3769-3780 (2008)
[52] Stiller, J.; Radons, G., Dynamics of nonlinear oscillators with random interactions, Phys. Rev. E, 58, 2, 1789 (1998)
[53] Petersen, G.; Sandler, N., Anticorrelations from power-law spectral disorder and conditions for an Anderson transition, Phys. Rev. B, 87, 19, Article 195443 pp. (2013)
[54] Gutenberg, B.; Richter, C., Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185-188 (1944)
[55] Pena, C.; Heidbach, O.; Moreno, M.; Bedford, J.; Ziegler, M.; Tassara, A.; Oncken, O., Impact of power-law rheology on the viscoelastic relaxation pattern and afterslip distribution following the 2010 Mw 8.8 Maule earthquake, Earth Planet. Sci. Lett., 541, Article 116292 pp. (2010)
[56] Lu, E.; Hamilton, R., Avalanches and the distribution of solar flares, Astrophys. J., 380, 2, 89-92 (1991)
[57] Zanette, D.; Manrubia, S., Vertical transmission of culture and the distribution of family names, Physica A, 295, 1, 1-8 (2001) · Zbl 0984.92516
[58] Hurst, H., Long-term storage capacity of reservoirs, Trans. Am. Soc. Civil Eng., 116, 1, 770-799 (1951)
[59] Wang, Y.; Du, J., Effect of magnetic field on transports of charged particles in the weakly ionized plasma with power-law q-distributions in nonextensive statistics, Physica A, 541, Article 123281 pp. (2002) · Zbl 07527021
[60] Peng, C.; Havlin, S.; Stanley, H.; Goldberger, A., Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos, 5, 1, 82-87 (1995)
[61] Silva, R.; Silva, J.; Anselmo, D.; Alcaniz, J.; Silva, W.; Costa, M., An alternative description of power law correlations in DNA sequences, Physica A, 545, Article 123735 pp. (2020)
[62] Willinger, W.; Taqqu, M.; Teverovsky, V., Stock market prices and long-range dependence, Financ. Stoch., 3, 1, 1-13 (1999) · Zbl 0924.90029
[63] Borl, L., Long-range memory and non-extensivity in financial markets, Euro-Phys. News, 36, 6, 228-231 (2005)
[64] Balthrop, A.; Quan, S., The power-law distribution of cumulative coal production, Physica A, 530, Article 121573 pp. (2019)
[65] Warusawitharana, M., Time-varying volatility and the power law distribution of stock returns, J. Empir. Financ., 49, 123-141 (2018)
[66] Shang, P.; Lu, Y.; Santi, K., Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis, Chaos Solitons Fractals, 36, 1, 82-90 (2008)
[67] Xu, X.; Wang, N.; Bian, J.; Zhou, B., Understanding the diversity on power-law-like degree distribution in social networks, Physica A, 525, 576-581 (2019)
[68] Gao, S., Generalized stochastic resonance in a linear fractional system with a random delay, J. Stat. Mech. Theory Exp., 12, 12011 (2012) · Zbl 1456.82767
[69] Pan, W.; Su, M.; Wu, H.; Lin, M.; Tsai, I.; Sun, C., Multiscale entropy analysis of heart rate variability for assessing the severity of sleepdisordered breathing, Entropy, 17, 1, 231-243 (2015)
[70] Guo, L.; Rivero, D.; Pazos, A., Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks, J. Neurosci. Methods, 193, 1, 156-163 (2010)
[71] Brańka, A.; Heyes, D., Algorithm for Brownian dynamics simulation, Phys. Rev. E, 58, 2, 2611-2615 (1998)
[72] Hellmann, T.; Wasserman, N., The first deal: The division of founder equity in new ventures, Manage. Sci., 63, 8, 2647-2666 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.