×

Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors. (English) Zbl 1391.92060

Summary: We consider a network of coupled oscillating units, where each unit comprises a self-oscillating polymer gel undergoing the Belousov-Zhabotinsky (BZ) reaction and an overlaying piezoelectric (PZ) cantilever. Through chemo-mechano-electrical coupling, the oscillations of the networked BZ-PZ units achieve in-phase or anti-phase synchronization, enabling, for example, the storage of information within the system. Herein, we develop numerical and computational models to show that the introduction of capacitors into the BZ-PZ system enhances the dynamical behavior of the oscillating network by yielding additional stable synchronization modes. We specifically show that the capacitors lead to a redistribution of charge in the system and alteration of the force that the PZ cantilevers apply to the underlying gel. Hence, the capacitors modify the strength of the coupling between the oscillators in the network. We utilize a linear stability analysis to determine the phase behavior of BZ-PZ networks encompassing different capacitances, force polarities, and number of units and then verify our findings with numerical simulations. Thus, through analytical calculations and numerical simulations, we determine the impact of the capacitors on the existence of the synchronization modes, their stability, and the rate of synchronization within these complex dynamical systems. The findings from our study can be used to design robotic materials that harness the materials’ intrinsic, responsive properties to perform such functions as sensing, actuation, and information storage.{
©2018 American Institute of Physics}

MSC:

92E20 Classical flows, reactions, etc. in chemistry
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D20 Stability of solutions to ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
Full Text: DOI

References:

[1] Fang, Y.; Yashin, V. V.; Levitan, S. P.; Balazs, A. C., Sci. Adv., 2, 1601114, (2016) · doi:10.1126/sciadv.1601114
[2] Fang, Y.; Yashin, V. V.; Levitan, S. P.; Balazs, A. C., Chem. Commun., 53, 7692, (2017) · doi:10.1039/C7CC03119J
[3] Kaneko, K., Phys. D, 41, 137, (1990) · Zbl 0709.58520 · doi:10.1016/0167-2789(90)90119-A
[4] Ikeda, K.; Matsumoto, K., Phys. D, 29, 223, (1987) · Zbl 0626.58014 · doi:10.1016/0167-2789(87)90058-3
[5] Aida, T.; Davis, P., IEEE J. Quantum Electron., 28, 686, (1992) · doi:10.1109/3.124994
[6] Hoppensteadt, F. C.; Izhikevich, E. M., Phys. Rev. Lett., 82, 2983, (1999) · doi:10.1103/PhysRevLett.82.2983
[7] Izhikevich, E. M.; Gally, J. A.; Edelman, G. M., Cereb. Cortex, 14, 933, (2004) · doi:10.1093/cercor/bhh053
[8] Fang, Y., IEEE J. Explor. Solid-State Comput. Devices Circuits, 1, 94, (2015) · doi:10.1109/JXCDC.2015.2507863
[9] Vodenicarevic, D., Sci. Rep., 7, 44772, (2017) · doi:10.1038/srep44772
[10] Wang, T.; Roychowdhury, J.
[11] Shukla, N., Sci. Rep., 4, 4964, (2014) · doi:10.1038/srep04964
[12] Maffezzoni, P.; Bichoy, B.; Zhang, Z.; Daniel, L., IEEE Trans. Circuits Syst. I: Regular Pap., 63, 1964, (2016) · doi:10.1109/TCSI.2016.2596300
[13] Yogendra, K., ACM J. Emerging Technol. Comput. Syst., 13, 4, 56, (2017) · doi:10.1145/3064835
[14] Lynch, M. A., Physiol. Rev., 84, 87, (2004) · doi:10.1152/physrev.00014.2003
[15] Haykin, S., A Comprehensive Foundation: Neural Networks, (2007), Princeton Hall: Princeton Hall, NJ
[16] LeCun, Y.; Bengio, Y.; Hinton, G., Nature, 521, 436, (2015) · doi:10.1038/nature14539
[17] Indiveri, G., Front. Neurosci., 5, 73, (2011) · doi:10.3389/fnins.2011.00073
[18] Adhikari, S. P., IEEE Trans. Neural Networks Learn. Syst., 23, 1426, (2012) · doi:10.1109/TNNLS.2012.2204770
[19] Kuzum, D.; Jeyasingh, R. G.; Lee, B.; Wong, H. S. P., Nano Lett., 12, 2179, (2012) · doi:10.1021/nl201040y
[20] Yashin, V. V.; Levitan, S. P.; Balazs, A. C., Sci. Rep., 5, 11577, (2015) · doi:10.1038/srep11577
[21] Ma, M.; Guo, L.; Anderson, D. G.; Langer, R., Science, 339, 186, (2013) · doi:10.1126/science.1230262
[22] Dagdeviren, C., Nat. Mater., 14, 728, (2015) · doi:10.1038/nmat4289
[23] Sun, Q., Adv. Mater., 27, 3411, (2015) · doi:10.1002/adma.201500582
[24] Yoshida, R., Adv. Mater., 22, 3463, (2010) · doi:10.1002/adma.200904075
[25] Yashin, V. V.; Balazs, A. C., Macromolecules, 39, 2024, (2006) · doi:10.1021/ma052622g
[26] Tyson, J. J.; Fife, P. C., J. Chem. Phys., 73, 2224, (1980) · doi:10.1063/1.440418
[27] Yashin, V. V.; Suzuki, S.; Yoshida, R.; Balazs, A. C., J. Mater. Chem., 22, 13625, (2012) · doi:10.1039/c2jm32065g
[28] Yashin, V. V.; Levitan, S. P.; Balazs, A. C., Chaos, 25, 064302, (2015) · doi:10.1063/1.4921689
[29] Hirotsu, S., J. Chem. Phys., 94, 3949, (1991) · doi:10.1063/1.460672
[30] Preumont, A., Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems, (2006), Springer, Dortrecht · Zbl 1109.70300
[31] Baek, S. H., Science, 334, 958, (2011) · doi:10.1126/science.1207186
[32] Baek, S. H.; Rzchowski, M. S.; Aksyuk, V. A., MRS Bull., 37, 1022, (2012) · doi:10.1557/mrs.2012.266
[33] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, (2007), MIT Press: MIT Press, Cambridge
[34] Manrubia, S. C.; Mikhailov, A. S.; Zanette, D., Emergence of Dynamical Order: Synchronization Phenomena in Complex Systems, (2004), World Scientific: World Scientific, River Edge · Zbl 1119.34001
[35] Golubitsky, M.; Stuart, I., The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space, (2002), Birkhäuser: Birkhäuser, Boston · Zbl 1031.37001
[36] Stewart, I.; Golubitsky, M.; Pivato, M., SIAM J. Appl. Dyn. Syst., 2, 609, (2003) · Zbl 1089.34032 · doi:10.1137/S1111111103419896
[37] Hoppensteadt, F. C.; Izhikevich, E. M., Weakly Connected Neural Networks, (2007), Springer: Springer, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.