×

Redundancy-selection trade-off in phenotype-structured populations. (English) Zbl 1472.92157

Summary: Realistic fitness landscapes generally display a redundancy-fitness trade-off: highly fit trait configurations are inevitably rare, while less fit trait configurations are expected to be more redundant. The resulting sub-optimal patterns in the fitness distribution are typically described by means of effective formulations, where redundancy provided by the presence of neutral contributions is modelled implicitly, \(e.g\). with a bias of the mutation process. However, the extent to which effective formulations are compatible with explicitly redundant landscapes is yet to be understood, as well as the consequences of a potential miss-match. Here we investigate the effects of such trade-off on the evolution of phenotype-structured populations, characterised by continuous quantitative traits. We consider a typical replication-mutation dynamics, and we model redundancy by means of two dimensional landscapes displaying both selective and neutral traits. We show that asymmetries of the landscapes will generate neutral contributions to the marginalised fitness-level description, that cannot be described by effective formulations, nor disentangled by the full trait distribution. Rather, they appear as effective sources, whose magnitude depends on the geometry of the landscape. Our results highlight new important aspects on the nature of sub-optimality. We discuss practical implications for rapidly mutant populations such as pathogens and cancer cells, where the qualitative knowledge of their trait and fitness distributions can drive disease management and intervention policies.

MSC:

92D15 Problems related to evolution

References:

[1] Wagner, A., Redundant gene functions and natural selection, J Evol. Biol., 12, 1, 1-16 (1999)
[2] Ciliberti, S.; Martin, O. C.; Wagner, A., Innovation and robustness in complex regulatory gene networks, Proc. Nat. Acad. Sci., 104, 34, 13591-13596 (2007)
[3] Wagner, A., Neutralism and selectionism: a network-based reconciliation, Nat. Rev. Genet., 9, 12, 965 (2008)
[4] Barghi, N.; Hermisson, J.; Schlötterer, C., Polygenic adaptation: a unifying framework to understand positive selection, Nat. Rev. Genet., 1-13 (2020)
[5] S. Manrubia, J.A. Cuesta, J. Aguirre, S.E. Ahnert, L. Altenberg, A.V. Cano, P. Catalán, R. Diaz-Uriarte, S.F. Elena, J.A. García-Martín, et al., 2020. From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics, arXiv preprint arXiv:2002.00363.
[6] M. Nei, Mutation-driven evolution, OUP Oxford, 2013.
[7] Huynen, M. A.; Stadler, P. F.; Fontana, W., Smoothness within ruggedness: the role of neutrality in adaptation, Proc. Nat. Acad. Sci., 93, 1, 397-401 (1996)
[8] D.C. Krakauer, J.B. Plotkin, Redundancy, antiredundancy, and the robustness of genomes, Proceedings of the National Academy of Sciences 99 (3) (2002) 1405-1409.
[9] Aguirre, J.; Lázaro, E.; Manrubia, S. C., A trade-off between neutrality and adaptability limits the optimization of viral quasispecies, J. Theor. Biol., 261, 1, 148-155 (2009) · Zbl 1403.92163
[10] Beardmore, R. E.; Gudelj, I.; Lipson, D. A.; Hurst, L. D., Metabolic trade-offs and the maintenance of the fittest and the flattest, Nature, 472, 7343, 342 (2011)
[11] S. Schaper, A.A. Louis, 2014. The arrival of the frequent: how bias in genotype-phenotype maps can steer populations to local optima, PloS one 9 (2).
[12] Wilke, C. O.; Wang, J. L.; Ofria, C.; Lenski, R. E.; Adami, C., Evolution of digital organisms at high mutation rates leads to survival of the flattest, Nature, 412, 6844, 331 (2001)
[13] Sardanyés, J.; Elena, S. F.; Solé, R. V., Simple quasispecies models for the survival-of-the-flattest effect: The role of space, J. Theor. Biol., 250, 3, 560-568 (2008) · Zbl 1397.92513
[14] Huynen, M. A., Exploring phenotype space through neutral evolution, J. Mol. Evol., 43, 3, 165-169 (1996)
[15] Van Nimwegen, E.; Crutchfield, J. P.; Huynen, M., Neutral evolution of mutational robustness, Proc. Nat. Acad. Sci., 96, 17, 9716-9720 (1999)
[16] Draghi, J. A.; Parsons, T. L.; Wagner, G. P.; Plotkin, J. B., Mutational robustness can facilitate adaptation, Nature, 463, 7279, 353 (2010)
[17] Aguirre, J., Buldú, J.M., Stich, M., Manrubia, S.C., 2011. Topological structure of the space of phenotypes: the case of rna neutral networks, PloS one 6 (10).
[18] Shackleton, M., Shipma, R., Ebner, M., 2000. An investigation of redundant genotype-phenotype mappings and their role in evolutionary search, in: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512), Vol. 1, IEEE, 2000, pp. 493-500.
[19] Codoner, F. M.; Darós, J.-A.; Solé, R. V.; Elena, S. F., The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens, PLoS Pathogens, 2, 12, Article e136 pp. (2006)
[20] Wagner, A., The origins of evolutionary innovations: a theory of transformative change in living systems (2011), OUP Oxford
[21] Wagner, A., Robustness, evolvability, and neutrality, FEBS Letters, 579, 8, 1772-1778 (2005)
[22] Khatri, B. S.; Goldstein, R. A., A coarse-grained biophysical model of sequence evolution and the population size dependence of the speciation rate, J. Theor. Biol., 378, 56-64 (2015) · Zbl 1343.92354
[23] Sella, G.; Hirsh, A. E., The application of statistical physics to evolutionary biology, Proc. Nat. Acad. Sci., 102, 27, 9541-9546 (2005)
[24] Sato, K.; Kaneko, K., Evolution equation of phenotype distribution: General formulation and application to error catastrophe, Phys. Rev. E, 75, 6, Article 061909 pp. (2007)
[25] Khatri, B., 2018. Survival of the frequent at finite population size and mutation rate: filing the gap between quasispecies and monomorphic regimes doi:10.1101/375147.
[26] Rigato, E.; Fusco, G., Effects of phenotypic robustness on adaptive evolutionary dynamics, Evol. Biol., 47, 3, 233-239 (2020)
[27] Chisholm, R. H.; Lorenzi, T.; Desvillettes, L.; Hughes, B. D., Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences, Zeitschrift für angewandte Mathematik und Physik, 67, 4, 100 (2016) · Zbl 1364.35380
[28] Tsimring, L. S.; Levine, H.; Kessler, D. A., Rna virus evolution via a fitness-space model, Phys. Rev. Letters, 76, 23, 4440 (1996)
[29] Orr, H. A., The distribution of fitness effects among beneficial mutations in fisher’s geometric model of adaptation, J. Theor. Biol., 238, 2, 279-285 (2006) · Zbl 1445.92202
[30] Gerland, U.; Hwa, T., On the selection and evolution of regulatory dna motifs, J. Mol. Evol., 55, 4, 386-400 (2002)
[31] Smith, J. M., Natural selection and the concept of a protein space, Nature, 225, 5232, 563-564 (1970)
[32] Wagner, A., The role of robustness in phenotypic adaptation and innovation, Proc. R. Soc. B: Biol. Sci., 279, 1732, 1249-1258 (2012)
[33] Khatri, B. S.; Goldstein, R. A., Biophysics and population size constrains speciation in an evolutionary model of developmental system drift, PLoS Comput. Biol., 15, 7, Article e1007177 pp. (2019)
[34] Wright, S., The roles of mutation, inbreeding, crossbreeding, and selection in evolution, Vol. 1, na (1932)
[35] Poelwijk, F. J.; Kiviet, D. J.; Weinreich, D. M.; Tans, S. J., Empirical fitness landscapes reveal accessible evolutionary paths, Nature, 445, 7126, 383 (2007)
[36] Gil, M.-E.; Hamel, F.; Martin, G.; Roques, L., Dynamics of fitness distributions in the presence of a phenotypic optimum: an integro-differential approach, Nonlinearity, 32, 10, 3485 (2019) · Zbl 1419.35190
[37] Crow, J.F., Kimura, M., 1964. The theory of genetic loads, in: Proceedings of the XIth International Congress of Genetics, Vol. 2, Pergamon Press, Oxford, 1964, pp. 495-505.
[38] Kimura, M., A stochastic model concerning the maintenance of genetic variability in quantitative characters, Proc. National Acad. Sci. USA, 54, 3, 731 (1965) · Zbl 0137.14404
[39] Champagnat, N.; Ferrière, R.; Méléard, S., Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models, Theor. Popul. Biol, 69, 3, 297-321 (2006) · Zbl 1118.92039
[40] Schuster, P.; Sigmund, K., Replicator dynamics, J. Theor. Biol., 100, 3, 533-538 (1983)
[41] Bürger, R.; Bomze, I. M., Stationary distributions under mutation-selection balance: structure and properties, Adv. Appl. Prob., 28, 1, 227-251 (1996) · Zbl 0858.92022
[42] Bürger, R., Mathematical properties of mutation-selection models, Genetica, 102, 279 (1998)
[43] Alfaro, M.; Carles, R., Replicator-mutator equations with quadratic fitness, Proc. Am. Math. Soc., 145, 12, 5315-5327 (2017) · Zbl 1376.92037
[44] Alfaro, M.; Veruete, M., Evolutionary branching via replicator-mutator equations, J. Dyn. Diff. Eqs., 31, 4, 2029-2052 (2019) · Zbl 1426.92047
[45] Ruijgrok, M.; Ruijgrok, T. W., An effective replicator equation for games with a continuous strategy set, Dyn. Games Appl., 5, 2, 157-179 (2015) · Zbl 1348.91044
[46] Cohen, Y., Evolutionary distributions, Evol. Ecol. Res., 11, 4, 611-635 (2009)
[47] Rouzine, I. M.; Wakeley, J.; Coffin, J. M., The solitary wave of asexual evolution, Proc. Nat. Acad. Sci., 100, 2, 587-592 (2003)
[48] Hallatschek, O., The noisy edge of traveling waves, Proc. Nat. Acad. Sci., 108, 5, 1783-1787 (2011)
[49] De Martino, D.; Capuani, F.; De Martino, A., Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in e. coli, Phys. Biol., 13, 3, Article 036005 pp. (2016)
[50] De Martino, A.; Gueudré, T.; Miotto, M., Exploration-exploitation tradeoffs dictate the optimal distributions of phenotypes for populations subject to fitness fluctuations, Phys. Rev. E, 99, 1, Article 012417 pp. (2019)
[51] Ardaševa, A.; Anderson, A. R.; Gatenby, R. A.; Byrne, H. M.; Maini, P. K.; Lorenzi, T., Comparative study between discrete and continuum models for the evolution of competing phenotype-structured cell populations in dynamical environments, Phys. Rev. E, 102, 4, Article 042404 pp. (2020)
[52] Wilke, C. O., Quasispecies theory in the context of population genetics, BMC evolutionary biology, 5, 1, 44 (2005)
[53] Desvillettes, L.; Jabin, P.-E.; Stephane, M.; Gael, R., On selection dynamics for continuous structured populations, Commun. Math. Sci., 6, 3, 729-747 (2008) · Zbl 1176.45009
[54] Galvani, A. P., Epidemiology meets evolutionary ecology, Trends Ecol. Evol., 18, 3, 132-139 (2003)
[55] Day, T.; Parsons, T.; Lambert, A.; Gandon, S., The price equation and evolutionary epidemiology, Philos. Trans. R. Soc. B, 375, 1797, 20190357 (2020)
[56] Solé, R. V.; Deisboeck, T. S., An error catastrophe in cancer?, J. Theor. Biol., 228, 1, 47-54 (2004) · Zbl 1439.92070
[57] Clairambault, J., An evolutionary perspective on cancer, with applications to anticancer drug resistance modelling and perspectives in therapeutic control, J. Math. Study, 52, 4, 470-496 (2019) · Zbl 1449.35420
[58] Day, T.; Proulx, S. R., A general theory for the evolutionary dynamics of virulence, Am. Nat., 163, 4, E40-E63 (2004)
[59] Wakano, J. Y.; Funaki, T.; Yokoyama, S., Derivation of replicator-mutator equations from a model in population genetics, Japan J. Ind. Appl. Math., 34, 2, 473-488 (2017) · Zbl 1371.92092
[60] Korobeinikov, A.; Dempsey, C., A continuous phenotype space model of rna virus evolution within a host, Math. Biosci. Eng., 11, 4, 919 (2014) · Zbl 1327.92035
[61] Bolzoni, L.; De Leo, G. A., Unexpected consequences of culling on the eradication of wildlife diseases: the role of virulence evolution, Am. Nat., 181, 3, 301-313 (2013)
[62] Bomze, I. M.; Burger, R., Stability by mutation in evolutionary games, Games Economic Behavior, 11, 2, 146-172 (1995) · Zbl 0840.90141
[63] Page, K. M.; Nowak, M. A., Unifying evolutionary dynamics, J. Theor. Biol., 219, 1, 93-98 (2002)
[64] Lorenzi, T.; Chisholm, R. H.; Clairambault, J., Tracking the evolution of cancer cell populations through the mathematical lens of phenotype-structured equations, Biology Direct, 11, 1, 43 (2016)
[65] Sasaki, A., Evolution of antigen drift/switching: continuously evading pathogens, J. Theor. Biol., 168, 3, 291-308 (1994)
[66] Sasaki, A.; Haraguchi, Y., Antigenic drift of viruses within a host: a finite site model with demographic stochasticity, J. Mol. Evol., 51, 3, 245-255 (2000)
[67] Lorenzi, T., Pugliese, A., Sensi, M., Zardini, A., 2020. Evolutionary dynamics in an si epidemic model with phenotype-structured susceptible compartment, arXiv preprint arXiv:2010.10443.
[68] MacArthur, R., Species packing and competitive equilibrium for many species, Theor. Popul Biol., 1, 1, 1-11 (1970)
[69] Pacciani-Mori, L.; Giometto, A.; Suweis, S.; Maritan, A., Dynamic metabolic adaptation can promote species coexistence in competitive communities, PLoS Comput. Biol., 16, 5, Article e1007896 pp. (2020)
[70] Gupta, D., Garlaschi, S., Suweis, S., Azaele, S., Maritan, A., 2021. An effective resource-competition model for species coexistence (2021). arXiv:2104.01256.
[71] Amicone, M., Gordo, I., 2020. Molecular signatures of resource competition: clonal interference drives the emergence of ecotypes, bioRxiv.
[72] Alizon, S.; Hurford, A.; Mideo, N.; Van Baalen, M., Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future, J Evol. Biol., 22, 2, 245-259 (2009)
[73] Shoval, O.; Sheftel, H.; Shinar, G.; Hart, Y.; Ramote, O.; Mayo, A.; Dekel, E.; Kavanagh, K.; Alon, U., Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space, Science, 336, 6085, 1157-1160 (2012)
[74] Xue, B.; Sartori, P.; Leibler, S., Environment-to-phenotype mapping and adaptation strategies in varying environments, Proc. Nat. Acad. Sci., 116, 28, 13847-13855 (2019)
[75] Weiße, A. Y.; Oyarzún, D. A.; Danos, V.; Swain, P. S., Mechanistic links between cellular trade-offs, gene expression, and growth, Proc. Nat. Acad. Sci., 112, 9, E1038-E1047 (2015)
[76] Klumpp, S.; Hwa, T., Bacterial growth: global effects on gene expression, growth feedback and proteome partition, Current Opinion Biotechnol., 28, 96-102 (2014)
[77] McGhee, G. R., The geometry of evolution: adaptive landscapes and theoretical morphospaces (2006), Cambridge University Press
[78] Wilson, E. O., Caste and division of labor in leaf-cutter ants (hymenoptera: Formicidae: Atta), Behavioral Ecol. Sociobiol., 7, 2, 157-165 (1980)
[79] Norberg, U. M.; Rayner, J. M., Ecological morphology and flight in bats (mammalia; chiroptera): wing adaptations, flight performance, foraging strategy and echolocation, Philos. Trans. R. Soc. London B, Biological Sciences, 316, 1179, 335-427 (1987)
[80] Boccabella, A.; Natalini, R.; Pareschi, L., On a continuous mixed strategies model for evolutionary game theory, Kinetic Related Models, 4, 1, 187 (2011) · Zbl 1216.35156
[81] Evans, R., Pay-off scarcity causes evolution of risk-aversion and extreme altruism, Sci. Rep., 8, 1, 1-10 (2018)
[82] Day, T.; Gandon, S., Insights from price’s equation into evolutionary, Disease evolution: models, concepts, and data analyses, 71, 23 (2006) · Zbl 1152.92344
[83] Day, T.; Gandon, S., Applying population-genetic models in theoretical evolutionary epidemiology, Ecol. Lett., 10, 10, 876-888 (2007)
[84] Martin, G.; Elena, S. F.; Lenormand, T., Distributions of epistasis in microbes fit predictions from a fitness landscape model, Nature Genetics, 39, 4, 555-560 (2007)
[85] Kingman, J. F., A simple model for the balance between selection and mutation, Journal of Applied Probability, 15, 1, 1-12 (1978) · Zbl 0382.92003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.