×

Probabilistic predictions of SIS epidemics on networks based on population-level observations. (English) Zbl 1497.92325

Summary: We predict the future course of ongoing susceptible-infected-susceptible (SIS) epidemics on regular, Erdős-Rényi and Barabási-Albert networks. It is known that the contact network influences the spread of an epidemic within a population. Therefore, observations of an epidemic, in this case at the population-level, contain information about the underlying network. This information, in turn, is useful for predicting the future course of an ongoing epidemic. To exploit this in a prediction framework, the exact high-dimensional stochastic model of an SIS epidemic on a network is approximated by a lower-dimensional surrogate model. The surrogate model is based on a birth-and-death process; the effect of the underlying network is described by a parametric model for the birth rates. We demonstrate empirically that the surrogate model captures the intrinsic stochasticity of the epidemic once it reaches a point from which it will not die out. Bayesian parameter inference allows for uncertainty about the model parameters and the class of the underlying network to be incorporated directly into probabilistic predictions. An evaluation of a number of scenarios shows that in most cases the resulting prediction intervals adequately quantify the prediction uncertainty. As long as the population-level data is available over a long-enough period, even if not sampled frequently, the model leads to excellent predictions where the underlying network is correctly identified and prediction uncertainty mainly reflects the intrinsic stochasticity of the spreading epidemic. For predictions inferred from shorter observational periods, uncertainty about parameters and network class dominate prediction uncertainty. The proposed method relies on minimal data at population-level, which is always likely to be available. This, combined with its numerical efficiency, makes the proposed method attractive to be used either as a standalone inference and prediction scheme or in conjunction with other inference and/or predictive models.

MSC:

92D30 Epidemiology
60J85 Applications of branching processes

Software:

Scikit

References:

[1] Siettos, C. I.; Russo, L., Mathematical modeling of infectious disease dynamics, Virulence, 4, 4, 295-306 (2013)
[2] Bastos, L. S.; Economou, T.; Gomes, M. F.; Villela, D. A.; Coelho, F. C.; Cruz, O. G.; Stoner, O.; Bailey, T.; Codeço, C. T., A modelling approach for correcting reporting delays in disease surveillance data, Stat. Med., 38, 22, 4363-4377 (2019)
[3] McGough, S. F.; Johansson, M. A.; Lipsitch, M.; Menzies, N. A., Nowcasting by Bayesian smoothing: A flexible, generalizable model for real-time epidemic tracking, PLoS Comput. Biol., 16, 4, Article e1007735 pp. (2020)
[4] Unkel, S.; Farrington, C. P.; Garthwaite, P. H.; Robertson, C.; Andrews, N., Statistical methods for the prospective detection of infectious disease outbreaks: A review, J. Royal Stat. Soc. Ser. A (Statist. Soc.), 175, 1, 49-82 (2012)
[5] Shaman, J.; Karspeck, A., Forecasting seasonal outbreaks of influenza, Proc. Natl. Acad. Sci., 109, 50, 20425-20430 (2012)
[6] Tizzoni, M.; Bajardi, P.; Poletto, C.; Ramasco, J. J.; Balcan, D.; Gonçalves, B.; Perra, N.; Colizza, V.; Vespignani, A., Real-time numerical forecast of global epidemic spreading: Case study of 2009 A/H1N1pdm, BMC Med., 10, 1, 1-31 (2012)
[7] Nsoesie, E.; Mararthe, M.; Brownstein, J., Forecasting peaks of seasonal influenza epidemics, PLoS Currents, 5 (2013)
[8] Chao, D. L.; Matrajt, L.; Basta, N. E.; Sugimoto, J. D.; Dean, B.; Bagwell, D. A.; Oiulfstad, B.; Halloran, M. E.; Longini Jr., I. M., Planning for the control of pandemic influenza A (H1N1) in Los Angeles county and the United States, Am. J. Epidemiol., 173, 10, 1121-1130 (2011)
[9] Di Lauro, F.; Kiss, I. Z.; Miller, J. C., Optimal timing of one-shot interventions for epidemic control, PLoS Comput. Biol., 17, 3, Article e1008763 pp. (2021)
[10] Di Lauro, F.; Berthouze, L.; Dorey, M. D.; Miller, J. C.; Kiss, I. Z., The impact of network properties and mixing on control measures and disease-induced herd immunity in epidemic models: a mean-field model perspective, Bull. Math. Biol., 83, 117 (2021) · Zbl 1482.92092
[11] Van Yperen, J.; Campillo-Funollet, E.; Madzvamuse, A., COVID-19: measuring the impact on healthcare demand and capacity and exploring intervention scenarios (2020), arXiv preprint arXiv:2012.15392
[12] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London Ser A, 115, 772, 700-721 (1927) · JFM 53.0517.01
[13] Jacquez, J. A.; Simon, C. P., The stochastic SI model with recruitment and deaths I. Comparison with the closed SIS model, Math. Biosci., 117, 1-2, 77-125 (1993) · Zbl 0785.92025
[14] Goeyvaerts, N.; Santermans, E.; Potter, G.; Torneri, A.; Van Kerckhove, K.; Willem, L.; Aerts, M.; Beutels, P.; Hens, N., Household members do not contact each other at random: Implications for infectious disease modelling, Proc. Royal Soc. B, 285, 1893, Article 20182201 pp. (2018)
[15] Shirley, M. D.; Rushton, S. P., The impacts of network topology on disease spread, Ecol. Complex., 2, 3, 287-299 (2005)
[16] Yin, Q.; Shi, T.; Dong, C.; Yan, Z., The impact of contact patterns on epidemic dynamics, PLoS One, 12, 3, Article e0173411 pp. (2017)
[17] Keeling, M. J.; Eames, K. T., Networks and epidemic models, J. R. Soc. Interface, 2, 4, 295-307 (2005)
[18] Danon, L.; Ford, A. P.; House, T.; Jewell, C. P.; Keeling, M. J.; Roberts, G. O.; Ross, J. V.; Vernon, M. C., Networks and the epidemiology of infectious disease, Interdiscip. Perspect. Infect. Dis., 2011 (2011)
[19] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Modern Phys., 87, 3, 925 (2015)
[20] Kiss, I. Z.; Miller, J. C.; Simon, P. L., Mathematics of Epidemics on Networks, Vol. 598 (2017), Springer: Springer Cham · Zbl 1373.92001
[21] Simon, P. L.; Taylor, M.; Kiss, I. Z., Exact epidemic models on graphs using graph-automorphism driven lumping, J. Math. Biol., 62, 4, 479-508 (2011) · Zbl 1232.92068
[22] Mata, A. S.; Ferreira, S. C., Pair quenched mean-field theory for the susceptible-infected-susceptible model on complex networks, Europhys. Lett., 103, 4, 48003 (2013)
[23] Cota, W.; Mata, A. S.; Ferreira, S. C., Robustness and fragility of the susceptible-infected-susceptible epidemic models on complex networks, Phys. Rev. E, 98, 1, Article 012310 pp. (2018)
[24] Della Rossa, F.; Salzano, D.; Di Meglio, A.; De Lellis, F.; Coraggio, M.; Calabrese, C.; Guarino, A.; Cardona-Rivera, R.; De Lellis, P.; Liuzza, D., A network model of Italy shows that intermittent regional strategies can alleviate the COVID-19 epidemic, Nature Commun., 11, 1, 1-9 (2020)
[25] Xue, L.; Jing, S.; Miller, J. C.; Sun, W.; Li, H.; Estrada-Franco, J. G.; Hyman, J. M.; Zhu, H., A data-driven network model for the emerging COVID-19 epidemics in wuhan, toronto and Italy, Math. Biosci., 326, Article 108391 pp. (2020) · Zbl 1448.92357
[26] Di Lauro, F.; Croix, J.-C.; Dashti, M.; Berthouze, L.; Kiss, I., Network inference from population-level observation of epidemics, Sci. Rep., 10, 1, 1-14 (2020)
[27] Di Lauro, F.; Croix, J.-C.; Berthouze, L.; Kiss, I., PDE limits of stochastic SIS epidemics on networks, J. Complex Netw., 8, 4 (2020)
[28] Doob, J. L., Markoff chains-denumerable case, Trans. Amer. Math. Soc., 58, 3, 455-473 (1945) · Zbl 0063.01146
[29] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361 (1977)
[30] Ganesh, A.; Massoulié, L.; Towsley, D., The effect of network topology on the spread of epidemics, (Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2 (2005), IEEE), 1455-1466
[31] Nagy, N.; Kiss, I. Z.; Simon, P., Approximate master equations for dynamical processes on graphs, Math. Model. Nat. Phenom., 9, 2, 43-57 (2014) · Zbl 1290.05138
[32] Devriendt, K.; Van Mieghem, P., Unified mean-field framework for susceptible-infected-susceptible epidemics on networks, based on graph partitioning and the isoperimetric inequality, Phys. Rev. E, 96, 5, Article 052314 pp. (2017)
[33] Kennedy, J.; Eberhart, R., Particle swarm optimization, (Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4 (1995), IEEE), 1942-1948
[34] Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825-2830 (2011) · Zbl 1280.68189
[35] Crawford, F. W.; Minin, V. N.; Suchard, M. A., Estimation for general birth-death processes, J. Amer. Statist. Assoc., 109, 506, 730-747 (2014) · Zbl 1367.62245
[36] Roy, V., Convergence diagnostics for Markov chain Monte Carlo, Annu. Rev. Stat. Appl., 7, 387-412 (2020)
[37] Vats, D.; Robertson, N.; Flegal, J. M.; Jones, G. L., Analyzing Markov chain Monte Carlo output, Wiley Interdiscip. Rev. Comput. Stat., 12, 4, Article e1501 pp. (2020) · Zbl 07909797
[38] Vats, D.; Flegal, J. M.; Jones, G. L., Multivariate output analysis for Markov chain Monte Carlo, Biometrika, 106, 2, 321-337 (2019) · Zbl 1434.62100
[39] Allen, A. J.; Boudreau, M. C.; Roberts, N. J.; Allard, A.; Hébert-Dufresne, L., Predicting the diversity of early epidemic spread on networks, Phys. Rev. Res., 4, 1, 013123 (2022)
[40] Castro, M.; Ares, S.; Cuesta, J. A.; Manrubia, S., The turning point and end of an expanding epidemic cannot be precisely forecast, Proc. Natl. Acad. Sci., 117, 42, 26190-26196 (2020) · Zbl 1485.92118
[41] Wilke, C. O.; Bergstrom, C. T., Predicting an epidemic trajectory is difficult, Proc. Natl. Acad. Sci., 117, 46, 28549-28551 (2020)
[42] Gomez-Rodriguez, M.; Leskovec, J.; Krause, A., Inferring networks of diffusion and influence, ACM Trans. Knowl. Discov. Data (TKDD), 5, 4, 1-37 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.