×

Coarse-grained clustering dynamics of heterogeneously coupled neurons. (English) Zbl 1356.92020

Summary: The formation of oscillating phase clusters in a network of identical Hodgkin-Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of \(N\) neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition – through \(N-1\) (possibly perturbed) period-doubling and subsequent bifurcations – to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar “fine” states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron’s “identity” (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established “identity-state” correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.

MSC:

92C20 Neural biology

References:

[1] Manrubia SC, Mikhailov AS, Zanette DH: Emergence of Dynamical Order. World Scientific, Singapore; 2004. · Zbl 1119.34001
[2] Kiss, IZ; Zhai, Y.; Hudson, JL, Predicting mutual entrainment of oscillators with experiment-based phase models, No. 94 (2005)
[3] Taylor AF, Kapetanopoulos P, Whitaker BJ, Toth R, Bull L, Tinsley MR: Clusters and switchers in globally coupled photochemical oscillators.Phys Rev Lett 2008., 100(21): Article ID 214101
[4] Taylor, AF; Tinsley, MR; Wang, F.; Showalter, K., Phase clusters in large populations of chemical oscillators, No. 50 (2011)
[5] Aronson DG, Golubitsky M, Krupa M: Coupled arrays of Josephson junctions and bifurcation of maps with SN symmetry.Nonlinearity 1991, 4: 861. · Zbl 0803.58040 · doi:10.1088/0951-7715/4/3/013
[6] Golomb D, Rinzel J: Clustering in globally coupled inhibitory neurons.Physica D 1994, 72: 259-282. · Zbl 0809.92003 · doi:10.1016/0167-2789(94)90214-3
[7] Zheng Z, Hu G, Hu B: Phase slips and phase synchronization of coupled oscillators.Phys Rev Lett 1998, 81: 5318-5321. · doi:10.1103/PhysRevLett.81.5318
[8] Liu, Z.; Lai, Y-C; Hoppensteadt, FC, Phase clustering and transition to phase synchronization in a large number of coupled nonlinear oscillators, No. 63 (2001)
[9] Zhang, J.; Yuan, Z.; Zhou, T., Synchronization and clustering of synthetic genetic networks: a role for cis-regulatory modules, No. 79 (2009)
[10] Hansel D, Mato G, Meunier C: Phase dynamics for weakly coupled Hodgkin-Huxley neurons.Europhys Lett 1993, 23: 367. · doi:10.1209/0295-5075/23/5/011
[11] Wiesenfeld K, Hadley P: Attractor crowding in oscillator arrays.Phys Rev Lett 1989,62(12):1335-1338. · doi:10.1103/PhysRevLett.62.1335
[12] Tsang KY, Wiesenfeld K: Attractor crowding in Josephson junction arrays.Appl Phys Lett 1989,56(5):495-496. · doi:10.1063/1.102774
[13] Skardal, PS; Ott, E.; Restrepo, JG, Cluster synchrony in systems of coupled phase oscillators with higher-order coupling, No. 84 (2011)
[14] Ashwin P, Swift JW: The dynamics of N weakly coupled identical oscillators.J Nonlinear Sci 1992, 2: 69. · Zbl 0872.58049 · doi:10.1007/BF02429852
[15] Hansel D, Mato G, Meunier C: Clustering and slow switching in globally coupled phase oscillators.Phys Rev E 1993,48(5):3470-3477. · doi:10.1103/PhysRevE.48.3470
[16] Kori H, Kuramoto Y: Slow switching in globally coupled oscillators: robustness and occurrence through delayed coupling.Phys Rev E 2001.,63(4): Article ID 046214
[17] Kori H: Slow switching in a population of delayed pulse-coupled oscillators.Phys Rev E 2003., 68(2): Article ID 021919
[18] Kiss IZ, Rustin CG, Kori H, Husdson JL: Engineering complex dynamical structures: sequential patterns and desynchronization.Science 2007, 316: 1886. · Zbl 1226.93068 · doi:10.1126/science.1140858
[19] Ashwin P, Burylko O, Maistrenko Y: Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators.Physica D 2008,237(4):454. · Zbl 1178.34041 · doi:10.1016/j.physd.2007.09.015
[20] Golomb D, Rinzel J: Dynamics of globally coupled inhibitory neurons with heterogeneity.Phys Rev E 1993,48(6):4810-4814. · doi:10.1103/PhysRevE.48.4810
[21] Rubin J, Terman D: Synchronized bursts and loss of synchrony among heterogeneous conditional oscillators.SIAM J Appl Dyn Syst 2002, 1: 146. · Zbl 1015.34027 · doi:10.1137/S111111110240323X
[22] Assisi, CG; Jirsa, VK; Kelso, JAS, Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion, No. 94 (2005)
[23] Goodfellow, M.; Glendinning, P., Mechanisms of intermittent state transitions in a coupled heterogeneous oscillator model of epilepsy, No. 3 (2013) · Zbl 1291.92035
[24] Moon SJ, Ghanem R, Kevrekidis IG: Coarse graining the dynamics of coupled oscillators.Phys Rev Lett 2006., 96(14): Article ID 144101
[25] Wiener N: The homogeneous chaos.Am J Math 1938,60(4):897. · JFM 64.0887.02 · doi:10.2307/2371268
[26] Ghanem RG, Spanos P: Stochastic Finite Elements: A Spectral Approach. Springer, New York; 1991. · Zbl 0722.73080 · doi:10.1007/978-1-4612-3094-6
[27] Bold KA, Zou Y, Kevrekidis IG, Henson MA: An equation-free approach to analyzing heterogeneous cell population dynamics.J Math Biol 2007,55(3):331. · Zbl 1123.37051 · doi:10.1007/s00285-007-0086-6
[28] Laing CR, Kevrekidis IG: Periodically-forced finite networks of heterogeneous coupled oscillators: a low-dimensional approach.Physica D 2008, 237: 207. · Zbl 1139.34308 · doi:10.1016/j.physd.2007.08.013
[29] Laing, CR; Zou, Y.; Smith, B.; Kevrekidis, I., Managing heterogeneity in the study of neural oscillator dynamics, No. 2 (2012) · Zbl 1291.92039
[30] Hodgkin A, Huxley A: Phase and frequency shifts in a population of phase oscillators.J Physiol 1952, 117: 500-544. · doi:10.1113/jphysiol.1952.sp004764
[31] Hakim V, Rappel W-J: Dynamics of the globally coupled complex Ginzburg-Landau equation.Phys Rev A 1992, 46: 7347-7350. · doi:10.1103/PhysRevA.46.R7347
[32] Golomb D, Hansel D, Shraiman B, Sompolinsky H: Clustering in globally coupled phase oscillators.Phys Rev A 1992,45(6):3516. · doi:10.1103/PhysRevA.45.3516
[33] Doedel EJ et al: Auto2000. A numerical bifurcation software [http://indy.cs.concordia.ca/auto/]; 2000.
[34] Golubitsky, M.; Stewart, IN; Schaeffer, DG, Appl Math Sci 69 (1988), New York · Zbl 0691.58003 · doi:10.1007/978-1-4612-4574-2
[35] Lucor, D.; Xiu, D.; Karniadakis, G., Spectral representations of uncertainty in simulations: algorithms and applications (2001)
[36] Xiu DB, Karniadakis GE: The Wiener-Askey polynomial chaos for stochastic differential equations.SIAM J Sci Comput 2002,24(2):619. · Zbl 1014.65004 · doi:10.1137/S1064827501387826
[37] Berry DA, Lindgren BW: Statistics: Theory and Methods. Duxbury Press, Pacific Grove; 1995.
[38] Harter HL: Expected values of normal order statistics. Aeronautical Research Laboratories, Wright-Patterson AFB, Ohio; 1960.
[39] Wan X, Karniadakis GE: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations.J Comp Physiol 2005,209(2):617-642. · Zbl 1078.65008 · doi:10.1016/j.jcp.2005.03.023
[40] Kevrekidis IG, Gear CW, Hyman JM, Kevrekidis PG, Runborg O, Theodoropoulos K: Equation-free coarse-grained multiscale computation: enabling microscopic simulators to perform system-level tasks.Commun Math Sci 2003, 1: 715-762. · Zbl 1086.65066 · doi:10.4310/CMS.2003.v1.n4.a5
[41] Lee SL, Gear W: On-the-fly local error estimation for projective integrators. LLNL report UCRL-JRNL-224892; 2006.
[42] Kelley CR: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia; 1995. · Zbl 0832.65046 · doi:10.1137/1.9781611970944
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.