×

Clone size distributions in networks of genetic similarity. (English) Zbl 1102.92037

Summary: We build networks of genetic similarity where the nodes are organisms sampled from biological populations. The procedure is illustrated by constructing networks from genetic data of a marine clonal plant. An important feature in the networks is the presence of clone subgraphs, i.e., sets of organisms with identical genotype forming clones. As a first step to understanding the dynamics that has shaped these networks, we point up a relationship between a particular degree distribution and the clone size distribution in the populations. We construct a dynamical model for the population dynamics, focussing on the dynamics of the clones, and solve it for the required distributions. Scale free and exponentially decaying forms are obtained depending on parameter values, the first type being obtained when clonal growth is the dominant process. Average distributions are dominated by the power law behavior presented by the fastest replicating populations.

MSC:

92D10 Genetics and epigenetics
94C99 Circuits, networks

References:

[1] Strogatz, S. H., Exploring complex networks, Nature, 410, 268-276 (2001) · Zbl 1370.90052
[2] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47-97 (2002) · Zbl 1205.82086
[3] Dorogovtsev, S. N.; Mendes, J. F.F., Evolution of networks, Adv. Phys., 51, 1079-1187 (2002)
[4] Newman, M. E.J., The structure and function of complex networks, SIAM Rev., 45, 167-256 (2003) · Zbl 1029.68010
[5] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: Structure and dynamics, Phys. Rep., 424, 175-308 (2006) · Zbl 1371.82002
[6] Jeong, H.; Mason, S. P.; Barabási, A.-L.; Oltvai, Z. N., Lethality and centrality in protein networks, Nature, 411, 41-42 (2001)
[7] Williams, R. J.; Berlow, E. L.; Dunne, J. A.; Barabási, A.-L.; Martínez, N. D., Two degrees of separation in complex food webs, Proc. Natl. Acad. Sci. USA, 99, 12913-12916 (2002)
[8] Dunne, J. A.; Williams, R. J.; Martínez, N. D., Food-web structure and network theory: The role of connectance and size, Proc. Natl. Acad. Sci. USA, 99, 12917-12922 (2002)
[9] Posada, D.; Crandall, K. A., Intraspecific gene genealogies: Trees grafting into networks, Trends. Ecol. Evol., 16, 37-45 (2001)
[10] Larkum, A. W.D.; Orth, R. J.; Duarte, C. M., Seagrasses: Biology, Ecology and Conservation (2006), Springer-Verlag: Springer-Verlag Berlin
[11] Goldstein, D. B.; Pollock, D. D., Launching microsatellites: a review of mutation processes and methods of phylogenetic interference, J. Hered., 88, 335-342 (1997)
[12] Alberto, F.; Correia, L.; Arnaud-Haond, S.; Billot, C.; Duarte, C. M.; Serrão, E., New microsatellite markers for the endemic Mediterranean seagrass Posidonia oceanica, Mol. Ecol. Notes, 3, 253-255 (2003)
[13] Arnaud-Haond, S.; Alberto, F.; Teixeira, S.; Procaccini, G.; Serrão, E.; Duarte, C. M., Assessing genetic diversity in clonal organisms: Low diversity or low resolution? Combining power and cost-efficiency in selecting markers, J. Hered., 96, 434-440 (2005)
[14] A.F. Rozenfeld, S. Arnaud-Haond, E. Hernández-García, V.M. Eguíluz, M.A. Matías, E. Serrão, C.M. Duarte, Spectrum of genetic diversity and networks of clonal plant populations, arxiv e-print q-bio.PE/0605050; A.F. Rozenfeld, S. Arnaud-Haond, E. Hernández-García, V.M. Eguíluz, M.A. Matías, E. Serrão, C.M. Duarte, Spectrum of genetic diversity and networks of clonal plant populations, arxiv e-print q-bio.PE/0605050
[15] Felsenstein, J., Inferring Phylogenies (2003), Sinauer Associates: Sinauer Associates Sunderland
[16] Onnela, J.-P.; Chakraborti, A.; Kaski, K.; Kertész, J.; Kanto, A., Dynamics of market correlations: Taxonomy and portfolio analysis, Phys. Rev. E, 68, 056110 (2003)
[17] Eguíluz, V. M.; Chialvo, D. R.; Cecchi, G. A.; Baliki, M.; Apkarian, A. V., Scale-free brain functional networks, Phys. Rev. Lett., 94, 018102 (2005)
[18] Rho, K.; Jeong, H.; Kahng, B., Identification of lethal cluster of genes in the yeast transcription network, Physica A, 364, 557-564 (2006)
[19] Adami, Ch.; Chu, J., Critical and near critical branching processes, Phys. Rev. E, 66, 011907 (2002)
[20] Yule, G. U., A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, F.R.S., Philos. Trans. R. Soc. Lond. Ser. B, 213, 21-87 (1925)
[21] Simon, H. A., On a class of skew distribution functions, Biometrika, 42, 425-440 (1955) · Zbl 0066.11201
[22] M.V. Simkin, V.P. Roychowdhury, Re-inventing Willis, arXiv e-print physics/0601192; M.V. Simkin, V.P. Roychowdhury, Re-inventing Willis, arXiv e-print physics/0601192
[23] Karev, G. P.; Wolf, Y. I.; Rzhetsky, A. Y.; Berezovskaya, F. S.; Koonin, E. V., Birth and death of protein domains: a simple model of evolution explains power law behavior, BMC Evol. Biol., 2, 18 (2002)
[24] Zanette, D. H.; Manrubia, S. C., Vertical transmission of culture and the distribution of family names, Physica A, 295, 1-8 (2001) · Zbl 0984.92516
[25] Manrubia, S. C.; Zanette, D. H., At the boundary between biological and cultural evolution: The origin of surname distributions, J. Theor. Biol., 216, 461-477 (2002)
[26] Sintes, T.; Marba, N.; Duarte, C.; Kendrick, G., Non-linear processes in seagrass-colonization explained by simple clonal growth rules, Oikos, 108, 165-175 (2005)
[27] Oborny, B.; Meszéna, G.; Szabó, G., Dynamics of populations on the verge of extinction, Oikos, 109, 291-296 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.