×

Supercaloric functions for the parabolic \(p\)-Laplace equation in the fast diffusion case. (English) Zbl 1465.35294

Summary: We study a generalized class of supersolutions, so-called \(p\)-supercaloric functions, to the parabolic \(p\)-Laplace equation. This class of functions is defined as lower semicontinuous functions that are finite in a dense set and satisfy the parabolic comparison principle. Their properties are relatively well understood for \(p\geq 2\), but little is known in the fast diffusion case \(1<p<2\). Every bounded \(p\)-supercaloric function belongs to the natural Sobolev space and is a weak supersolution to the parabolic \(p\)-Laplace equation for the entire range \(1<p<\infty\). Our main result shows that unbounded \(p\)-supercaloric functions are divided into two mutually exclusive classes with sharp local integrability estimates for the function and its weak gradient in the supercritical case \(\frac{2n}{n+1}<p<2\). The Barenblatt solution and the infinite point source solution show that both alternatives occur. Barenblatt solutions do not exist in the subcritical case \(1<p\leq \frac{2n}{n+1}\) and the theory is not yet well understood.

MSC:

35K92 Quasilinear parabolic equations with \(p\)-Laplacian
35K67 Singular parabolic equations
35B51 Comparison principles in context of PDEs

References:

[1] Bidaut-Véron, MF, Self-similar solutions of the \(p\)-Laplace heat equation: the fast diffusion case, Pac. J. Math., 227, 2, 201-269 (2006) · Zbl 1128.35058 · doi:10.2140/pjm.2006.227.201
[2] Björn, A.; Björn, J.; Gianazza, U.; Parviainen, M., Boundary regularity for degenerate and singular parabolic equations, Calc. Var. Partial Differ. Equ., 52, 3-4, 797-827 (2015) · Zbl 1333.35087 · doi:10.1007/s00526-014-0734-9
[3] Barenblatt, G.I.: On self-similar motions of a compressible fluid in a porous medium. Akad. Nauk SSSR. Prikl. Mat. Meh. 16, 679-698 (1952) ((in Russian)) · Zbl 0047.19204
[4] Baroni, P., Singular parabolic equations, measures satisfying density conditions, and gradient integrability, Nonlinear Anal., 153, 89-116 (2017) · Zbl 1365.35193
[5] Bögelein, V.; Duzaar, F.; Marcellini, P., Existence of evolutionary variational solutions via the calculus of variations, J. Differ. Equ., 256, 12, 3912-3942 (2014) · Zbl 1288.35007 · doi:10.1016/j.jde.2014.03.005
[6] Bögelein, V.; Duzaar, F.; Scheven, C., The obstacle problem for parabolic minimizers, J. Evol. Equ., 17, 4, 1273-1310 (2017) · Zbl 1387.35382 · doi:10.1007/s00028-017-0384-4
[7] Chasseigne, E.; Vázquez, JL, Theory of extended solutions for fast-diffusion equations in optimal classes of data. Radiation from singularities, Arch. Ration. Mech. Anal., 164, 2, 133-187 (2002) · Zbl 1018.35048 · doi:10.1007/s00205-002-0210-0
[8] DiBenedetto, E., Degenerate Parabolic Equations (1993), New York: Universitext, Springer, New York · Zbl 0794.35090 · doi:10.1007/978-1-4612-0895-2
[9] DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack’s inequality for degenerate and singular parabolic equations. Springer Monographs in Mathematics, Springer, New York (2012) · Zbl 1237.35004
[10] Fontes, M., Initial-boundary value problems for parabolic equations, Ann. Acad. Sci. Fenn. Math., 34, 2, 583-605 (2009) · Zbl 1198.35137
[11] Gianazza, U.; Liao, N.; Lukkari, T., A boundary estimate for singular parabolic diffusion equations, NoDEA Nonlinear Differ. Equ. Appl., 25, 4, 24 (2018) · Zbl 1401.35206 · doi:10.1007/s00030-018-0523-9
[12] Ivert, P-A, On the boundary value problem for \(p\)-parabolic equations in methods of spectral analysis in mathematical physics, Oper. Theory Adv. Appl., 186, 229-239 (2009) · Zbl 1171.35389
[13] Juutinen, P.; Lindqvist, P.; Manfredi, JJ, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal., 33, 3, 699-717 (2001) · Zbl 0997.35022 · doi:10.1137/S0036141000372179
[14] Kilpeläinen, T.; Lindqvist, P., On the Dirichlet boundary value problem for a degenerate parabolic equation, SIAM J. Math. Anal., 27, 3, 661-683 (1996) · Zbl 0857.35071 · doi:10.1137/0527036
[15] Kinnunen, J.; Lindqvist, P., Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., 185, 3, 411-435 (2006) · Zbl 1232.35080 · doi:10.1007/s10231-005-0160-x
[16] Kinnunen, J., Lindqvist, P.: Summability of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4(1), 59-78 (2005) · Zbl 1107.35070
[17] Korte, R.; Kuusi, T.; Parviainen, M., A connection between a general class of superparabolic functions and supersolutions, J. Evol. Equ., 10, 1, 1-20 (2010) · Zbl 1239.35076 · doi:10.1007/s00028-009-0037-3
[18] Korte, R.; Kuusi, T.; Siljander, J., Obstacle problem for nonlinear parabolic equations, J. Differ. Equ., 246, 9, 3668-3680 (2009) · Zbl 1173.35077 · doi:10.1016/j.jde.2009.02.006
[19] Kinnunen, J.; Lehtelä, P.; Lindqvist, P.; Parviainen, M., Supercaloric functions for the porous medium equation, J. Evol. Equ., 19, 1, 249-270 (2019) · Zbl 1414.35114 · doi:10.1007/s00028-018-0474-y
[20] Kuusi, T.: Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7(4), 673-716 (2008) · Zbl 1178.35100
[21] Kuusi, T., Lower semicontinuity of weak supersolutions to nonlinear parabolic equations, Differ. Integral Equ., 22, 11-12, 1211-1222 (2009) · Zbl 1240.35220
[22] Kuusi, T.; Lindqvist, P.; Parviainen, M., Shadows of infinities, Ann. Mat. Pura Appl., 195, 4, 1185-1206 (2016) · Zbl 1348.35125 · doi:10.1007/s10231-015-0511-1
[23] Watson, N., Introduction to heat potential theory, Mathematical Surveys and Monographs 182 (2012), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1251.31001
[24] Wu, Z., Zhao, J., Yin, J., Li, H.: Nonlinear diffusion equations, World Scientific Publishing Co., Inc., River Edge, NJ, 2001, Translated from the 1996 Chinese original and revised by the authors · Zbl 0997.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.