×

Limit problems for a fractional \(p\)-Laplacian as \(p\to\infty\). (English) Zbl 1381.35218

Summary: The purpose of this work is the analysis of the solutions to the following problems related to the fractional \(p\)-Laplacian in a Lipschitzian bounded domain \(\Omega\subset \mathbb{R}^N\), \[ \begin{cases} -\int_{\mathbb{R}^N}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x))}{|x-y^{\alpha p}}dy= f(x,u) \quad & x\in\Omega, \\ u=g(x)\quad & x\in\mathbb{R}^N\backslash\Omega, \end{cases} \] where \(\alpha\in (0, 1)\) and the exponent \(p\) goes to infinity. In particular we will analyze the cases:
(i)
\(f = f(x)\).
(ii)
\(f = f(u) = |u|^{\theta(p)-1}u\) with \(0 < \theta(p) < p- 1\) and \(\lim_{p\to\infty}\frac{\theta(p)}{p-1}=\Theta < 1\) with \(g\geq0\).
We show the convergence of the solutions to certain limit as \(p\) and identify the limit equation. In both cases, the limit problem is closely related to the Infinity Fractional Laplacian: \[ \mathcal{L}_\infty v(x) =\mathcal{L}^+_\infty v(x) + \mathcal{L}^-_\infty v(x), \] where \[ L^+_\infty v(x) = \displaystyle\sup_{y\in\mathbb{R}^N} \frac{v(y)- v(x)}{|y - x|^\alpha},\quad \mathcal{L}^-_\infty v(x) = \displaystyle\mathrm{inf}_{y\in\mathbb{R}^N} \frac{v(y)- v(x)}{|y - x|^\alpha}. \]

MSC:

35R11 Fractional partial differential equations
35J60 Nonlinear elliptic equations
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35D40 Viscosity solutions to PDEs
Full Text: DOI

References:

[1] Adams, R.A.: Fournier, J.F.: Sobolev Spaces. Elsevier, Amsterdam (2008) · Zbl 0385.46024
[2] Aronsson G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551-561 (1967) · Zbl 0158.05001 · doi:10.1007/BF02591928
[3] Aronsson G., Crandall M.G., Juutinen P.: A tour of the theory of absolutely minimizing functions. Bull. Am. Math. Soc. 41, 439-505 (2004) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
[4] Barles G., Imbert C: Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Ann. Inst. H. Poincar Anal. Non Linèaire 25(3), 567585 (2008) · Zbl 1155.45004
[5] Bhattacharya, T., Dibenedetto, E., Manfredi J.: Limits as \[{p \rightarrow \infty}\] p→∞ and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 1568 (1991)
[6] Bjorland C., Caffarelli L., Figalli A.: Nonlocal tug-of-war and the infinity fractional Laplacian. Commun. Pure Appl. Math. 65, 337-380 (2012) · Zbl 1235.35278 · doi:10.1002/cpa.21379
[7] Bourgain J., Brezis H., Mironescu P.: Limiting embedding theorems for Ws,p and application. J. Anal. Math. 87, 77101 (2002) · Zbl 1029.46030
[8] Chambolle, A., Lindgren, E., Monneau R.: A Hölder Infinity Laplacian. ESAIM Control Optim. Calc. Var. 18(3), 799-835 (2012) · Zbl 1255.35078
[9] Crandall M.G., Ishii H., Lions P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[10] Charro, F., Peral, I.: Limit Branch os solution as \[{p \rightarrow \infty}\] p→∞-Laplacian. Commun. Partial Differ. Equ. 32(10-12), 19651981 (2007) · Zbl 1132.35033
[11] Di Nezza, E., Palatucci, G., Valdinoci E.: Hitchhikers guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521573 (2012) (preprint 2011) · Zbl 1252.46023
[12] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing, Singapore (2003) · Zbl 1028.49001
[13] Haroske, D.D., Triebel, H.: Distributions, Sobolev spaces, elliptic equations. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2008) · Zbl 1133.46001
[14] Jensen R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123, 51-74 (1993) · Zbl 0789.35008 · doi:10.1007/BF00386368
[15] Ishii, H., Nakamura, G.: A class of integral equations and approximation of p-Laplace equations. Calc. Var. Partial Differ. Equ. 37(3-4), 485522 (2010) · Zbl 1198.45005
[16] Jylhä H.: optimal transportation problem related to the limits of solutions of local and nonlocal p-Laplace-type problems. Rev. Mat. Complut. 28(1), 49-83 (2015) · Zbl 1308.49042 · doi:10.1007/s13163-014-0147-5
[17] Juutinen, P.: Minimization Problems for Lipschitz Functions via Viscosity Solutions, pp. 1-39. University of Jyvaskyla (1996) · Zbl 1155.45004
[18] Juutinen, P., Lindqvist, P., Manfredi, J.J.: The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89-105 (1999) · Zbl 0947.35104
[19] Juutinen P., Lindqvist P., Manfredi J.J.: On the equivalence of viscosity solutions and weak solutions for a quasilinear equation. SIAM J. Math. Anal. 33(3), 699-717 (2001) · Zbl 0997.35022 · doi:10.1137/S0036141000372179
[20] Juutinen, P., Parviainen, M., Rossi, JD.: Discontinuous gradient constraints and the infinity Laplacian. Int. Math. Res. Not. (2015). doi:10.1093/imrn/rnv214 · Zbl 1404.35175
[21] Lindgren, E., Lindqvist P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49(1-2), 795826 (2014) · Zbl 1292.35193
[22] McShane E.J.: Extension of range of functions. Bull. Am. Math. Soc. 40(12), 837-842 (1934) · Zbl 0010.34606 · doi:10.1090/S0002-9904-1934-05978-0
[23] Maz’ya, V., Shaposhnikova, T.: On the Bougain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195(2), 230238 (2002) · Zbl 1028.46050
[24] Pérez-Llanos M.: Anisotropic variable exponent \[{(p(\cdot). q(\cdot))}\](p(·).q(·))-Laplacian with large exponents. Adv. Nonlinear Stud. 13(4), 1003-1034 (2013) · Zbl 1293.35091 · doi:10.1515/ans-2013-0414
[25] Pérez-Llanos, M., Rossi, J.D.: Limits as \[{p(x) \rightarrow \infty}\] p(x)→∞-harmonic functions with non-homogeneous Neumann boundary conditions. In: Nonlinear Elliptic Partial Differential Equations, Contemporary Mathematics, vol. 540, pp. 187-201. American Mathematical Society, Providence (2011) · Zbl 1243.35050
[26] Whitney H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Am. Math. Soc. 36(1), 63-89 (1934) · Zbl 0008.24902 · doi:10.1090/S0002-9947-1934-1501735-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.