×

Matrix \(\mathcal A_p\) weights, degenerate Sobolev spaces, and mappings of finite distortion. (English) Zbl 1357.30015

The authors consider degenerate Sobolev spaces where the degeneracy is controlled by matrix \(A_p\)-weights. They prove the classical Meyers-Serrin result \( H=W \) in this setting and give applications to weak solutions of degenerate \(p\)-Laplace equations and to mappings of finite distortion.

MSC:

30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003) · Zbl 1098.46001
[2] Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63(4), 337-403 (1976/1977) · Zbl 0368.73040
[3] Bickel, K., Petermichl, S., Wick, B.: Bounds for the Hilbert Transform with Matrix \[A_2\] A2 Weights. Preprint (2014). arXiv:1402.3886 · Zbl 1335.44001
[4] Bownik, M.: Inverse volume inequalities for matrix weights. Indiana Univ. Math. J. 50(1), 383-410 (2001) · Zbl 0992.42006 · doi:10.1512/iumj.2001.50.1672
[5] Chanillo, S., Wheeden, R.L.: Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions. Am. J. Math. 107(5), 1191-1226 (1985) · Zbl 0575.42026 · doi:10.2307/2374351
[6] Christ, M., Goldberg, M.: Vector \[A_2\] A2 weights and a Hardy-Littlewood maximal function. Trans. Am. Math. Soc. 353(5), 1995-2002 (2001). (electronic) · Zbl 0995.42015 · doi:10.1090/S0002-9947-01-02759-3
[7] Chua, S.-K., Rodney, S., Wheeden, R.L.: A compact embedding theorem for generalized Sobolev spaces. Pac. J. Math. 265(1), 17-59 (2013) · Zbl 1360.46015 · doi:10.2140/pjm.2013.265.17
[8] Cruz-Uribe, D., Moen, K., Naibo, V.: Regularity of solutions to degenerate \[p\] p-Laplacian equations. J. Math. Anal. Appl. 401(1), 458-478 (2013) · Zbl 1266.35098 · doi:10.1016/j.jmaa.2012.12.023
[9] Cruz-Uribe, D., Neugebauer, C.J.: The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347(8), 2941-2960 (1995) · Zbl 0851.42016
[10] Duoandikoetxea, J.: Fourier Analysis. Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001) · Zbl 0969.42001
[11] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992) · Zbl 0804.28001
[12] Frazier, M., Roudenko, S.: Matrix-weighted Besov spaces and conditions of \[A_p\] Ap type for \[0<p\le 10\]<p≤1. Indiana Univ. Math. J. 53(5), 1225-1254 (2004) · Zbl 1081.42023 · doi:10.1512/iumj.2004.53.2483
[13] García-Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116. North-Holland Publishing Co, Amsterdam (1985) · Zbl 0578.46046
[14] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations Of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition · Zbl 1042.35002
[15] Goldberg, M.: Matrix \[A_p\] Ap weights via maximal functions. Pac. J. Math. 211(2), 201-220 (2003) · Zbl 1065.42013 · doi:10.2140/pjm.2003.211.201
[16] Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2009) · Zbl 1158.42001 · doi:10.1007/978-0-387-09434-2
[17] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1993) · Zbl 0780.31001
[18] Heinonen, J., Koskela, P.: Sobolev mappings with integrable dilatations. Arch. Rational Mech. Anal. 125(1), 81-97 (1993) · Zbl 0792.30016 · doi:10.1007/BF00411478
[19] Hytönen, T.H., Pérez, C.: Sharp weighted bounds involving \[{A}_\infty\] A∞. Anal. PDE 32, 1-17 (2009) · Zbl 1283.42032
[20] Isralowitz, J., Kwon, H.K., Pott, S.: A matrix weighted \[T1\] T1 theorem for matrix kernelled Calderon Zygmund operators - I. preprint, (2014). arXiv:1401.6570
[21] Iwaniec, T., Koskela, P., Onninen, J.: Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144(3), 507-531 (2001) · Zbl 1006.30016 · doi:10.1007/s002220100130
[22] Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2001) · Zbl 1045.30011
[23] Johnson, R.L., Neugebauer, C.J.: Properties of BMO functions whose reciprocals are also BMO. Z. Anal. Anwendungen 12(1), 3-11 (1993) · Zbl 0777.42004
[24] Journé, J.-L.: Calderón-Zygmund Operators, Pseudodifferential Operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics, vol. 994. Springer, Berlin (1983) · Zbl 0508.42021 · doi:10.1007/BFb0061458
[25] Kauhanen, J., Koskela, P., Malý, J., Onninen, J., Zhong, X.: Mappings of finite distortion: sharp Orlicz-conditions. Rev. Mat. Iberoamericana 19(3), 857-872 (2003) · Zbl 1059.30017 · doi:10.4171/RMI/372
[26] Lauzon, M., Treil, S.: Scalar and vector Muckenhoupt weights. Indiana Univ. Math. J. 56(4), 1989-2015 (2007) · Zbl 1134.42001 · doi:10.1512/iumj.2007.56.3007
[27] Manfredi, J.J.: Weakly monotone functions. J. Geom. Anal. 4(3), 393-402 (1994) · Zbl 0805.35013 · doi:10.1007/BF02921588
[28] Meyers, J., Serrin, N.: H=W. Proc. Nat. Acad. Sci. USA 51, 1055-1056 (1964) · Zbl 0123.30501 · doi:10.1073/pnas.51.6.1055
[29] Monticelli, D.D., Payne, K.R.: Maximum principles for weak solutions of degenerate elliptic equations with a uniformly elliptic direction. J. Diff. Equ. 247(7), 1993-2026 (2009) · Zbl 1195.35157 · doi:10.1016/j.jde.2009.06.024
[30] Monticelli, D.D., Rodney, S., Wheeden, R.L.: Boundedness of weak solutions of degenerate quasilinear equations with rough coefficients. Differ. Integral Equ. 25(1-2), 143-200 (2012) · Zbl 1249.35117
[31] Nazarov, F.L., Treil, S.: The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis. Algebra i Analiz 8(5), 32-162 (1996) · Zbl 0873.42011
[32] Nielsen, M.: Trigonometric bases for matrix weighted \[L_p\] Lp-spaces. J. Math. Anal. Appl. 371(2), 784-792 (2010) · Zbl 1213.46018 · doi:10.1016/j.jmaa.2010.06.015
[33] Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of \[L_2({ R}^d)\] L2(Rd). Can. J. Math. 47(5), 1051-1094 (1995) · Zbl 0838.42016 · doi:10.4153/CJM-1995-056-1
[34] Roudenko, S.: Matrix-weighted Besov spaces. Trans. Am. Math. Soc. 355(1), 273-314 (2003). (electronic) · Zbl 1010.42011 · doi:10.1090/S0002-9947-02-03096-9
[35] Sawyer, E.T., Wheeden, R.L.: Degenerate Sobolev spaces and regularity of subelliptic equations. Trans. Am. Math. Soc. 362(4), 1869-1906 (2010) · Zbl 1191.35085 · doi:10.1090/S0002-9947-09-04756-4
[36] Treil, S., Volberg, A.: Wavelets and the angle between past and future. J. Funct. Anal. 143(2), 269-308 (1997) · Zbl 0876.42027 · doi:10.1006/jfan.1996.2986
[37] Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, vol. 1736. Springer, Berlin (2000) · Zbl 0949.31006 · doi:10.1007/BFb0103908
[38] Vodop’janov, S.K., Gol’dšteĭn, V.M.: Quasiconformal mappings, and spaces of functions with first generalized derivatives. Sibirsk. Mat. Ž. 17(3), 515-531 (1976). 715
[39] Volberg, A.: Matrix \[A_p\] Ap weights via \[SS\]-functions. J. Am. Math. Soc. 10(2), 445-466 (1997) · Zbl 0877.42003 · doi:10.1090/S0894-0347-97-00233-6
[40] Zhikov, V.V.: On the density of smooth functions in a weighted Sobolev space. Dokl. Akad. Nauk 453(3), 247-251 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.