×

Radó-Kneser-Choquet theorem for simply connected domains (\(p\)-harmonic setting). (English) Zbl 1410.31002

Let \(\Omega\subset{\mathbb{R}}^2\) be a bounded Jordan domain, and let \({\mathcal{Q}}\subset {\mathbb{R}}^2\) be a convex domain. Let \(h=u+iv: \partial \Omega\to \partial {\mathcal{Q}}\) be a homeomorphism of the boundaries. The Radó-Kneser-Choquet theorem says that the continuous harmonic extension \(H: \Omega\to {\mathcal{Q}}\) of \(h\) is a \(\text{{C}}^\infty\) diffeomorphism. There are extensions of this result for linear and nonlinear elliptic PDEs assuming \(\Omega\) is a Jordan domain. The authors are interested in the case where \(\Omega\) is only simply connected. Since in this case one cannot speak of boundary homeomorphisms, the authors consider monotone boundary maps instead. Let \(h: \partial\Omega\to \partial{\mathcal{Q}}\) be a continuous monotone mapping, where \(\Omega\subset {\mathbb{R}}^2\) is a simply connected domain and \({\mathcal{Q}}\subset {\mathcal{R}}^2\) is a bounded convex domain. The main result of this paper says that the \(p\)-harmonic extension \(H: \Omega\to{\mathbb{R}}^2\), \(1< p<\infty\), is a \(\text{{C}}^\infty\) diffeomorphism onto \({\mathcal{Q}}\).

MSC:

31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
Full Text: DOI

References:

[1] Alessandrini, G.; Magnanini, R., The index of isolated critical points and solutions of elliptic equations in the plane, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19, 4, 567-589 (1992) · Zbl 0793.35021
[2] Alessandrini, G.; Magnanini, R., Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM J. Math. Anal., 25, 5, 1259-1268 (1994) · Zbl 0809.35070
[3] Alessandrini, Giovanni; Nesi, Vincenzo, Univalent \(\sigma \)-harmonic mappings, Arch. Ration. Mech. Anal., 158, 2, 155-171 (2001) · Zbl 0977.31006
[4] Alessandrini, Giovanni; Nesi, Vincenzo, Beltrami operators, non-symmetric elliptic equations and quantitative Jacobian bounds, Ann. Acad. Sci. Fenn. Math., 34, 1, 47-67 (2009) · Zbl 1177.30019
[5] Alessandrini, Giovanni; Nesi, Vincenzo, Invertible harmonic mappings, beyond Kneser, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 8, 3, 451-468 (2009) · Zbl 1182.31002
[6] Alessandrini, Giovanni; Nesi, Vincenzo, Elliptic systems and material interpenetration, part 1, Funct. Approx. Comment. Math., 40, 105-115 (2009) · Zbl 1195.31002
[7] Alessandrini, G.; Sigalotti, M., Geometric properties of solutions to the anisotropic \(p\)-Laplace equation in dimension two, Ann. Acad. Sci. Fenn. Math., 26, 1, 249-266 (2001) · Zbl 1002.35044
[8] Aronsson, Gunnar; Lindqvist, Peter, On \(p\)-harmonic functions in the plane and their stream functions, J. Differential Equations, 74, 1, 157-178 (1988) · Zbl 0659.35037
[9] Astala, Kari; Iwaniec, Tadeusz; Martin, Gaven, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series 48, xviii+677 pp. (2009), Princeton University Press, Princeton, NJ · Zbl 1182.30001
[10] BM S. Banach and S. Mazur. \"Uber mehrdeutige stetige Abbildungen, Studia Math. 5.1 (1934), 174-178. · Zbl 0013.08202
[11] Bauman, Patricia; Marini, Antonella; Nesi, Vincenzo, Univalent solutions of an elliptic system of partial differential equations arising in homogenization, Indiana Univ. Math. J., 50, 2, 747-757 (2001) · Zbl 1330.35121
[12] Bauman, Patricia; Phillips, Daniel, Univalent minimizers of polyconvex functionals in two dimensions, Arch. Rational Mech. Anal., 126, 2, 161-181 (1994) · Zbl 0809.49039
[13] Bojarski, B.; Iwaniec, T., \(p\)-harmonic equation and quasiregular mappings. Partial differential equations, Warsaw, 1984, Banach Center Publ. 19, 25-38 (1987), PWN, Warsaw · Zbl 0659.35035
[14] Br L. E. J. Brouwer, On the Structure of Perfect Sets of Points, Proc. Kon. Akad. van Wet. te Amsterdam 14 (1911), 137-147.
[15] Bshouty, D.; Hengartner, W., Univalent harmonic mappings in the plane. Handbook of complex analysis: geometric function theory. Vol. 2, 479-506 (2005), Elsevier Sci. B. V., Amsterdam · Zbl 1074.30015
[16] Choquet, Gustave, Sur un type de transformation analytique g\'en\'eralisant la repr\'esentation conforme et d\'efinie au moyen de fonctions harmoniques, Bull. Sci. Math. (2), 69, 156-165 (1945) · Zbl 0063.00851
[17] Duren, Peter, Harmonic mappings in the plane, Cambridge Tracts in Mathematics 156, xii+212 pp. (2004), Cambridge University Press, Cambridge · Zbl 1055.31001
[18] Duren, Peter; Hengartner, Walter, Harmonic mappings of multiply connected domains, Pacific J. Math., 180, 2, 201-220 (1997) · Zbl 0885.30020
[19] Gleason, Stewart; Wolff, Thomas H., Lewy’s harmonic gradient maps in higher dimensions, Comm. Partial Differential Equations, 16, 12, 1925-1968 (1991) · Zbl 0784.31003
[20] Gottlieb, Daniel Henry, All the way with Gauss-Bonnet and the sociology of mathematics, Amer. Math. Monthly, 103, 6, 457-469 (1996) · Zbl 0966.53003
[21] Heinonen, Juha; Kilpel\"ainen, Tero; Martio, Olli, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, vi+363 pp. (1993), The Clarendon Press, Oxford University Press, New York · Zbl 0780.31001
[22] Hildebrandt, Stefan; Sauvigny, Friedrich, Embeddedness and uniqueness of minimal surfaces solving a partially free boundary value problem, J. Reine Angew. Math., 422, 69-89 (1991) · Zbl 0729.53014
[23] Ho, Chung Wu, A note on proper maps, Proc. Amer. Math. Soc., 51, 237-241 (1975) · Zbl 0273.54007
[24] Iwaniec, Tadeusz; Koski, Aleksis; Onninen, Jani, Isotropic \(p\)-harmonic systems in 2D Jacobian estimates and univalent solutions, Rev. Mat. Iberoam., 32, 1, 57-77 (2016) · Zbl 1338.35171
[25] Iwaniec, Tadeusz; Kovalev, Leonid V.; Onninen, Jani, Diffeomorphic approximation of Sobolev homeomorphisms, Arch. Ration. Mech. Anal., 201, 3, 1047-1067 (2011) · Zbl 1260.46023
[26] Iwaniec, Tadeusz; Manfredi, Juan J., Regularity of \(p\)-harmonic functions on the plane, Rev. Mat. Iberoamericana, 5, 1-2, 1-19 (1989) · Zbl 0805.31003
[27] Iwaniec, Tadeusz; Onninen, Jani, Monotone Sobolev mappings of planar domains and surfaces, Arch. Ration. Mech. Anal., 219, 1, 159-181 (2016) · Zbl 1395.30023
[28] Iwaniec, Tadeusz; Onninen, Jani, Hyperelastic deformations of smallest total energy, Arch. Ration. Mech. Anal., 194, 3, 927-986 (2009) · Zbl 1193.74013
[29] Iwaniec, Tadeusz; Onninen, Jani, Rad\'o-Kneser-Choquet theorem, Bull. Lond. Math. Soc., 46, 6, 1283-1291 (2014) · Zbl 1307.31001
[30] Iwaniec, Tadeusz; \v Sver\'ak, Vladim\'\i r., On mappings with integrable dilatation, Proc. Amer. Math. Soc., 118, 1, 181-188 (1993) · Zbl 0784.30015
[31] Ja S. Janiszewski, Sur les coupures du plan faites par des continus, Prace Mat.-Fiz. 26 (1913), 11-63.
[32] Jost, J\"urgen, Univalency of harmonic mappings between surfaces, J. Reine Angew. Math., 324, 141-153 (1981) · Zbl 0453.53036
[33] Kalaj, David, Invertible harmonic mappings beyond the Kneser theorem and quasiconformal harmonic mappings, Studia Math., 207, 2, 117-136 (2011) · Zbl 1279.30032
[34] Kn H. Kneser, L\"osung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 123-124. · JFM 52.0498.03
[35] Kuratowski, K., Topology. Vol. II, new edition, revised and augmented. Translated from the French by A. Kirkor, xiv+608 pp. (1968), Academic Press, New York-London; Pa\'nstwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw · Zbl 1444.55001
[36] Laugesen, Richard Snyder, Injectivity can fail for higher-dimensional harmonic extensions, Complex Variables Theory Appl., 28, 4, 357-369 (1996) · Zbl 0871.54020
[37] Lewy, Hans, On the non-vanishing of the jacobian of a homeomorphism by harmonic gradients, Ann. of Math. (2), 88, 518-529 (1968) · Zbl 0164.13803
[38] Lyzzaik, Abdallah, Univalence criteria for harmonic mappings in multiply connected domains, J. London Math. Soc. (2), 58, 1, 163-171 (1998) · Zbl 0922.30021
[39] Mal\'y, Jan, On increment of the tangent argument along a curve, \v Casopis P\v est. Mat., 106, 2, 186-196, 210 (1981)
[40] Mal\'y, Jan; Ziemer, William P., Fine regularity of solutions of elliptic partial differential equations, Mathematical Surveys and Monographs 51, xiv+291 pp. (1997), American Mathematical Society, Providence, RI · Zbl 0882.35001
[41] Manfredi, Juan J., \(p\)-harmonic functions in the plane, Proc. Amer. Math. Soc., 103, 2, 473-479 (1988) · Zbl 0658.35041
[42] McAuley, Louis F., Some fundamental theorems and problems related to monotone mappings. Proc. First Conf. on Monotone Mappings and Open Mappings, SUNY at Binghamton, Binghamton, N.Y., 1970, 1-36 (1971), State Univ. of New York at Binghamton, N.Y. · Zbl 0226.54006
[43] Melas, Antonios D., An example of a harmonic map between Euclidean balls, Proc. Amer. Math. Soc., 117, 3, 857-859 (1993) · Zbl 0836.54007
[44] Milnor, J. W., On the total curvature of knots, Ann. of Math. (2), 52, 248-257 (1950) · Zbl 0037.38904
[45] Morrey, Charles B., Jr., The topology of (path) surfaces, Amer. J. Math., 57, 1, 17-50 (1935) · Zbl 0011.03701
[46] Morrey, Charles B., Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43, 1, 126-166 (1938) · Zbl 0018.40501
[47] Parthasarathy, T., On global univalence theorems, Lecture Notes in Mathematics 977, viii+106 pp. (1983), Springer-Verlag, Berlin-New York · Zbl 0506.90001
[48] Rad T. Rad\'o, Aufgabe 41., Jahresber. Deutsch. Math.-Verein. 35 (1926) 49.
[49] Schoen, Richard; Yau, Shing Tung, On univalent harmonic maps between surfaces, Invent. Math., 44, 3, 265-278 (1978) · Zbl 0388.58005
[50] Spanier, Edwin H., Algebraic topology, corrected reprint, xvi+528 pp. (1981), Springer-Verlag, New York-Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.