×

An adaptive fast solver for a general class of positive definite matrices via energy decomposition. (English) Zbl 1391.65066

Summary: In this paper, we propose an adaptive fast solver for a general class of symmetric positive definite (SPD) matrices which include the well-known graph Laplacian. We achieve this by developing an adaptive operator compression scheme and a multiresolution matrix factorization algorithm which achieve nearly optimal performance on both complexity and well-posedness. To develop our adaptive operator compression and multiresolution matrix factorization methods, we first introduce a novel notion of energy decomposition for SPD matrix \(A\) using the representation of energy elements. The interaction between these energy elements depicts the underlying topological structure of the operator. This concept of decomposition naturally reflects the hidden geometric structure of the operator which inherits the localities of the structure. By utilizing the intrinsic geometric information under this energy framework, we propose a systematic operator compression scheme for the inverse operator \(A^{-1}\). In particular, with an appropriate partition of the underlying geometric structure, we can construct localized basis by using the concept of interior and closed energy. Meanwhile, two important localized quantities are introduced, namely, the error factor and the condition factor. Our error analysis results show that these two factors will be the guidelines for finding the appropriate partition of the basis functions such that prescribed compression error and acceptable condition number can be achieved. By virtue of this insight, we propose the patch pairing algorithm to realize our energy partition framework for operator compression with controllable compression error and condition number.

MSC:

65F10 Iterative numerical methods for linear systems
15B48 Positive matrices and their generalizations; cones of matrices
68R10 Graph theory (including graph drawing) in computer science
15A23 Factorization of matrices

Software:

LAMG

References:

[1] J. Ashburner, {\it A fast diffeomorphic image registration algorithm}, Neuroimage, 38 (2007), pp. 95-113.
[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, {\it Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods}, SIAM, Philadelphia, PA, 1994. · Zbl 0814.65030
[3] K.-J. Bathe and E. L. Wilson, {\it Numerical Methods in Finite Element Analysis}, Vol. 197, Prentice Hall, Englewood Cliffs, NJ, 1976. · Zbl 0387.65069
[4] M. Belkin and P. Niyogi, {\it Laplacian eigenmaps and spectral techniques for embedding and clustering}, NIPS, 14 (2001), pp. 585-591.
[5] M. Belkin, P. Niyogi, and V. Sindhwani, {\it Manifold regularization: A geometric framework for learning from labeled and unlabeled examples}, J. Mach. Learn. Res., 7 (2006), pp. 2399-2434. · Zbl 1222.68144
[6] F. L. Bookstein, {\it Principal warps: Thin-plate splines and the decomposition of deformations}, IEEE Trans. Pattern Anal. Mach. Intell., 11 (1989), pp. 567-585. · Zbl 0691.65002
[7] Y. Boykov and V. Kolmogorov, {\it Computing geodesics and minimal surfaces via graph cuts}, ICCV, 3 (2003), pp. 26-33.
[8] S. C. Brenner and C. Carstensen, {\it Finite element methods}, in Encyclopedia of Computational Mechanics, Vol. 1, E. Stein, R. de Borst, and T. J. R. Hughes, eds., John Wiley, Chichester, 2004, p. 4.
[9] D. Cai, X. He, J. Han, and T. S. Huang, {\it Graph regularized nonnegative matrix factorization for data representation}, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011), pp. 1548-1560.
[10] Y. Cao, M. I. Miller, R. L. Winslow, and L. Younes, {\it Large deformation diffeomorphic metric mapping of vector fields}, IEEE Trans. Med. Imaging, 24 (2005), pp. 1216-1230.
[11] T. F. Chan and J. Zou, {\it Additive Schwarz domain decomposition methods for elliptic problems on unstructured meshes}, Numer. Algorithms, 8 (1994), pp. 329-346. · Zbl 0815.65127
[12] F. R. Chung, {\it Spectral Graph Theory}, Vol. 92, American Mathematical Society, Providence, RI, 1997. · Zbl 0867.05046
[13] C. Colovos and T. O. Yeates, {\it Verification of protein structures: Patterns of nonbonded atomic interactions}, Protein Sci., 2 (1993), pp. 1511-1519.
[14] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet, {\it A direct formulation for sparse PCA using semidefinite programming}, SIAM Rev., 49 (2007), pp. 434-448. · Zbl 1128.90050
[15] W. Hackbusch, {\it Multi-Grid Methods and Applications}, Vol. 4, Springer Science & Business Media, New York, 2013. · Zbl 0595.65106
[16] Y. T. Hou and P. Zhang, {\it Sparse operator compression of higher-order elliptic operators with rough coefficients}, Res. Math. Sci., 4 (2017), p. 24, . · Zbl 1412.65215
[17] I. Jolliffe, {\it Principal Component Analysis}, Wiley Online Library, New York, 2002. · Zbl 1011.62064
[18] R. Kolluri, J. R. Shewchuk, and J. F. O’Brien, {\it Spectral surface reconstruction from noisy point clouds}, in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, ACM, 2004, pp. 11-21.
[19] I. Koutis, G. L. Miller, and R. Peng, {\it A nearly-m log n time solver for SDD linear systems}, in Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium, 2011, pp. 590-598. · Zbl 1292.05249
[20] M. G. Larson and A. M\aalqvist, {\it Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems}, Comp. Methods Appl. Mech. Engrg., 196 (2007), pp. 2313-2324. · Zbl 1173.74431
[21] O. E. Livne and A. Brandt, {\it Lean algebraic multigrid (LAMG): Fast graph laplacian linear solver}, SIAM J. Sci. Comput., 34 (2012), pp. B499-B522. · Zbl 1253.65045
[22] A. M\aalqvist and D. Peterseim, {\it Localization of elliptic multiscale problems}, Math. Comp., 83 (2014), pp. 2583-2603. · Zbl 1301.65123
[23] B. Moghaddam, Y. Weiss, and S. Avidan, {\it Spectral bounds for sparse PCA: Exact and greedy algorithms}, Adv. Neural Inf. Process. Syst., 18 (2006), p. 915.
[24] A. Myronenko and X. Song, {\it Point set registration: Coherent point drift}, IEEE Trans. Pattern Anal. Mach. Intell., 32 (2010), pp. 2262-2275.
[25] M. E. Newman, {\it Modularity and community structure in networks}, Proc. Natl. Acad. Sci., 103 (2006), pp. 8577-8582.
[26] A. Y. Ng, M. I. Jordan, Y. Weiss, et al., {\it On spectral clustering: Analysis and an algorithm}, NIPS, 14 (2001), pp. 849-856.
[27] H. Owhadi, {\it Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games}, SIAM Rev., 59 (2017), pp. 99-149. · Zbl 1358.65071
[28] H. Owhadi and C. Scovel, {\it Universal Scalable Robust Solvers from Computational Information Games and Fast Eigenspace Adapted Multiresolution Analysis}, preprint, , 2017.
[29] Y. Saad, {\it Numerical Methods for Large Eigenvalue Problems: Revised Edition}, SIAM, Philadelphia, PA, 2011. · Zbl 1242.65068
[30] R. S. Sampath and G. Biros, {\it A parallel geometric multigrid method for finite elements on octree meshes}, SIAM J. Sci. Comput., 32 (2010), pp. 1361-1392. · Zbl 1213.65144
[31] B. Schölkopf and A. J. Smola, {\it Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond}, MIT Press, Cambridge, MA, 2002.
[32] D. A. Spielman and S.-H. Teng, {\it Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems}, in Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, ACM, 2004, pp. 81-90. · Zbl 1192.65048
[33] D. A. Spielman and S.-H. Teng, {\it A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly-Linear Time Graph Partitioning}, preprint, , 2008.
[34] D. A. Spielman and S.-H. Teng, {\it Spectral sparsification of graphs}, SIAM J. Comput., 40 (2011), pp. 981-1025. · Zbl 1228.68040
[35] D. A. Spielman and S.-H. Teng, {\it A local clustering algorithm for massive graphs and its application to nearly linear time graph partitioning}, SIAM J. Comput., 42 (2013), pp. 1-26. · Zbl 1286.68244
[36] D. A. Spielman and S.-H. Teng, {\it Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems}, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 835-885. · Zbl 1311.65031
[37] K. Stüben, {\it A review of algebraic multigrid}, J. Comput. Appl. Math., 128 (2001), pp. 281-309. · Zbl 0979.65111
[38] U. Trottenberg, C. W. Oosterlee, and A. Schuller, {\it Multigrid}, Academic Press, New York, 2000.
[39] P. Vaněk, J. Mandel, and M. Brezina, {\it Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems}, Computing, 56 (1996), pp. 179-196. · Zbl 0851.65087
[40] P. Wesseling and C. W. Oosterlee, {\it Geometric multigrid with applications to computational fluid dynamics}, J. Comput. Appl. Math., 128 (2001), pp. 311-334. · Zbl 0989.76069
[41] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, {\it Graph embedding and extensions: A general framework for dimensionality reduction}, IEEE Trans. Pattern Anal. Mach. Intell., 29, 2007.
[42] H. Zou, T. Hastie, and R. Tibshirani, {\it Sparse principal component analysis}, J. Comput. Graph. Statist., 15 (2006), pp. 265-286.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.