×

A unified hyperbolic model for viscoelastic liquids. (English) Zbl 1272.76025

Summary: We present a unified purely hyperbolic model for compressible and incompressible viscoelastic liquids. The proposed model is then solved numerically using the least-squares finite element method (LSFEM).

MSC:

76A10 Viscoelastic fluids
76M10 Finite element methods applied to problems in fluid mechanics

References:

[1] Baaijens, F.: Mixed finite element methods for viscoelastic flow analysis: a review, J. non-Newtonian fluid mech. 79, 361-385 (1998) · Zbl 0957.76024 · doi:10.1016/S0377-0257(98)00122-0
[2] Brian, J.; Antony, N.: Remarks concerning compressible viscoelastic fluid models, J. non-Newtonian fluid mech. 36, 411-417 (1990) · Zbl 0708.76016 · doi:10.1016/0377-0257(90)85021-P
[3] Courant, R.; Hilbert, D.: Methods of mathematical physics, Methods of mathematical physics 2 (1962) · Zbl 0099.29504
[4] Georgiou, G. C.: The time-dependent compressible Poiseuille and extrudate-swell flows of a carreau fluid with slip at the wall, J. non-Newtonian fluid mech. 109, 93-114 (2003) · Zbl 1025.76002 · doi:10.1016/S0377-0257(02)00164-7
[5] Godlewski, E.; Raviart, P.: Numerical approximation of the hyperbolic systems of conservation laws, Numerical approximation of the hyperbolic systems of conservation laws 118 (1996) · Zbl 0860.65075
[6] Guaily, A., Epstein, M., in press. A least-squares finite element method for viscoelastic liquids. In: 8th Asian Computational Fluid Dynamics Conference, Hong Kong SAR, China, Paper Number ACFD0148-T002-A-001. · Zbl 1272.76025
[7] Jian, H.; Tsorng-Whay, P.: Simulation for high weissenberg number viscoelastic flow by a finite element method, Appl. math. Lett. 20, 988-993 (2007) · Zbl 1152.76428 · doi:10.1016/j.aml.2006.12.003
[8] Jordan, P. M.; Puri, A.: Revisiting Stokes first problem for Maxwell fluids, Quart. J. Mech. appl. Math. 58, No. 2, 213-227 (2005) · Zbl 1072.76006 · doi:10.1093/qjmamj/hbi008
[9] Jordan, P. M.; Puri, A.; Boros, G.: On a new exact solution to Stokes first problem for Maxwell fluids, Int. J. Non-linear mech. 39, 1371-1377 (2004) · Zbl 1348.76024
[10] Joseph, D.: Fluid dynamics of viscoelastic liquids, Fluid dynamics of viscoelastic liquids 84 (1990) · Zbl 0698.76002
[11] Joseph, D.; Riccius, O.; Arney, M.: Shear-wave speeds and elastic moduli for different liquids. Part 2. Experiments, J. fluid. Mech. 171, 309-338 (1986) · Zbl 0609.76034 · doi:10.1017/S0022112086001465
[12] Pakdel, P.; Spiegelberg, S.; Mckinley, G.: Cavity flows of elastic liquids: two-dimensional flows, Phys. fluids 9, No. 11, 3123-3140 (1997)
[13] Phelan, F.; Malone, M.; Winter, H.: A purely hyperbolic model for unsteady viscoelastic flow, J. non-Newtonian fluid mech. 32, 197-224 (1989) · Zbl 0672.76009 · doi:10.1016/0377-0257(89)85036-0
[14] Raikher, Y. L.; Rusakov, V.: Dynamic response of a magnetic suspension in a viscoelastic fluid, Phys. rev. E 54, 3846-3852 (1996)
[15] Reiner, M.: Cross stresses in laminar flow of liquids, Phys. fluids 3, 427-432 (1960) · Zbl 0094.38902 · doi:10.1063/1.1706054
[16] Renardy, M., 2000. Mathematical analysis of viscoelastic flows. In: CBMS-NSF Regional Conference Series in Applied Mathematics, No. 73. · Zbl 0956.76001
[17] Schofield, R. K.; Scott-Blair, G. W.: The relationship between viscosity, elasticity and plastic strength of soft materials as illustrated by some mechanical properties of flour doughs. I, Proc. roy. Soc. A 138, 707-718 (1932) · JFM 58.0865.05 · doi:10.1098/rspa.1932.0211
[18] Speziale, C. G.: On Maxwell models in viscoelasticity that are more computable, Int. J. Non-linear mech. 35, 567-571 (2000) · Zbl 1006.76007 · doi:10.1016/S0020-7462(98)00071-7
[19] Tanner, R. I.: Note on the Rayleigh problem for a visco-elastic fluid, Z. angew. Math. phys. 13, 573-580 (1962) · Zbl 0127.40402 · doi:10.1007/BF01595580
[20] Thompson, P.: Compressible fluid dynamics, (1972) · Zbl 0251.76001
[21] Tsiklauri, D.; Beresnev, I.: Enhancement in the dynamic response of a viscoelastic fluid flowing through a longitudinally vibrating tube, Phys. rev. E 63, 046304 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.