×

Vibration and critical pressure analyses of functionally graded combined shells submerged in water with external hydrostatic pressure. (English) Zbl 1525.74139

MSC:

74K25 Shells
Full Text: DOI

References:

[1] Huang, H.; Qiang, H.; Demin, W., Buckling of FGM cylindrical shells subjected to pure bending load, Compos. Struct., 93, 11, 2945-2952 (2011)
[2] Li, S. R.; Batra, R. C., Buckling of axially compressed thin cylindrical shells with functionally graded middle layer, Thin-Walled Struct., 44, 10, 1039-1047 (2006)
[3] Pradhan, S. C.; Loy, C. T.; Lam, K. Y., Vibration characteristics of functionally graded cylindrical shells under various boundary conditions, Appl. Acoust., 61, 1, 111-129 (2000)
[4] Ebrahimi, M. J.; Najafizadeh, M. M., Free vibration analysis of two-dimensional functionally graded cylindrical shells, Appl. Math. Model., 38, 1, 308-324 (2014) · Zbl 1449.74113
[5] Li, H.; Fuzhen, P.; Li, Y., Application of first-order shear deformation theory for the vibration analysis of functionally graded doubly-curved shells of revolution, Compos. Struct., 212, 22-42 (2019)
[6] Sofiyev, A. H., The vibration and buckling of sandwich cylindrical shells covered by different coatings subjected to the hydrostatic pressure, Compos. Struct., 117, 124-134 (2014)
[7] Baghlani, A.; Majid, K.; Dehghan, S. M., Free vibration analysis of FGM cylindrical shells surrounded by Pasternak elastic foundation in thermal environment considering fluid-structure interaction, Appl. Math. Model., 78, 550-575 (2020) · Zbl 1481.74235
[8] Sofiyev, A. H.; Kuruoglu, N., Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressures, Thin Walled Struct.78, 121-130 (2014)
[9] Liew, K. M.; Alibeigloo, A., Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities, Compos. Struct., 256, 113039 (2021)
[10] Fu, T.; Wu, X.; Zhengming, X., Vibro-acoustic characteristics of eccentrically stiffened functionally graded material sandwich cylindrical shell under external mean fluid, Appl. Math. Model., 91, 214-231 (2021) · Zbl 1481.74511
[11] Hussain, M.; M-Nawaz, N.; Aamir, S., Vibrations of rotating cylindrical shells with functionally graded material using wave propagation approach, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 232, 23, 4342-4356 (2018)
[12] Li, H.; Fuzhen, P.; Hailong, C., Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method, Compos. B Eng., 164, 249-264 (2019)
[13] Su, Z.; Guoyong, J.; Shuangxia, S., A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions, Int. J. Mech. Sci., 80, 62-80 (2014)
[14] Shahgholian, D.; Safarpour, M.; Rahimi, A.-. R., Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh-Ritz method, Acta Mech., 231, 1887-1902 (2020) · Zbl 1440.74211
[15] Qu, Y.; Xinhua, L.; Guoqing, Y., A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions, Compos. B Eng., 50, 381-402 (2013)
[16] Qu, Y.; Guang, M., Three-dimensional elasticity solution for vibration analysis of functionally graded hollow and solid bodies of revolution. part I: theory, Eur. J. Mech. A Solids, 44, 222-233 (2014) · Zbl 1406.74317
[17] Malekzadeh, P.; Heydarpour, Y., Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment, Compos. Struct., 94, 9, 2971-2981 (2012)
[18] Rahimi, A.; Akbar, A., High-accuracy approach for thermomechanical vibration analysis of FG-Gplrc fluid-conveying viscoelastic thick cylindrical shell, Int. J. Appl. Mech., 12, 07, Article 2050073 pp. (2020)
[19] Bich, D.-. H.; Nguyen, X. N., Nonlinear vibration of functionally graded circular cylindrical shells based on improved donnell equations, J. Sound Vib., 331, 25, 5488-5501 (2012)
[20] Sun, J.; Xinsheng, Xu; Lim, C-W., Buckling of functionally graded cylindrical shells under combined thermal and compressive loads, J. Therm. Stress., 37, 3, 340-362 (2014)
[21] Naghdabadi, R.; Kordkheili, S. A.H., A finite element formulation for analysis of functionally graded plates and shells, Arch. Appl. Mech., 74, 5, 375-386 (2005) · Zbl 1119.74608
[22] Santos, H.; Cristóvão-M, M. S.; Carlos-A, M. S., A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials, Compos. Struct., 91, 4, 427-432 (2009)
[23] Sofiyev, A. H., Review of research on the vibration and buckling of the FGM conical shells, Compos. Struct., 211, 301-317 (2019)
[24] Tornabene, F.; Erasmo, V.; Inman, D.-. J., 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures, J. Sound Vib., 328, 3, 259-290 (2009)
[25] Sofiyev, A. H., The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure, Compos. Struct., 89, 3, 356-366 (2009)
[26] Sofiyev, A. H., The buckling of FGM truncated conical shells subjected to combined axial tension and hydrostatic pressure, Compos. Struct., 92, 2, 488-498 (2010)
[27] Bich, D. H.; Dao-Van, D.; Le-Kha, H., Nonlinear static and dynamic buckling analysis of functionally graded shallow spherical shells including temperature effects, Compos. Struct., 94, 9, 2952-2960 (2012)
[28] Li, H.; Fuzhen, P.; Yi, R., Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory, Thin Walled Struct. 144, Article 106331 pp. (2019)
[29] Qu, Y.; Wu, S.; Yong, C., Vibration analysis of ring-stiffened conical-cylindrical-spherical shells based on a modified variational approach, Int. J. Mech. Sci., 69, 72-84 (2013)
[30] Bagheri, H.; Kiani, Y.; Eslami, M.-. R., Free vibration of FGM conical-spherical shells, Thin Walled Struct.160, 107387 (2021)
[31] Bagheri, H.; Kiani, Y.; Bagheri, N., Free vibrations of functionally graded material cylindrical shell closed with two spherical caps, Sh. Offshore Struct., 17, 4, 939-951 (2022)
[32] Qu, Y.; Guang, M., Prediction of acoustic radiation from functionally graded shells of revolution in light and heavy fluids, J. Sound Vib., 376, 112-130 (2016)
[33] Hasheminejad, S. M.; Sadeq, M.; Akbarzadeh, H. M., Acoustic radiation from a submerged hollow FGM sphere, Arch. Appl. Mech., 81, 12, 1889-1902 (2011) · Zbl 1271.76309
[34] Hasheminejad, S.-. M.; Mahdi, A.-. V., Acoustic radiation and active control from a smart functionally graded submerged hollow cylinder, J. Vib. Control, 20, 14, 2202-2220 (2014)
[35] Hasheminejad, S.-. M.; Mahdi, A.-. V., Vibroacoustic response and active control of a fluid-filled functionally graded piezoelectric material composite cylinder, J. Intell. Mater. Syst. Struct., 23, 7, 775-790 (2012)
[36] Iqbal, Z.; Muhammad-Nawaz, N.; Nazra, S., Vibration characteristics of FGM circular cylindrical shells filled with fluid using wave propagation approach, Appl. Math. Mech., 30, 11, 1393-1404 (2009) · Zbl 1353.74035
[37] Han, Y.; Xiang, Z.; Tianyun, Li, Free vibration and elastic critical load of functionally graded material thin cylindrical shells under internal pressure, Int. J. Struct. Stab. Dyn., 18, 11, Article 1850138 pp. (2018) · Zbl 1535.74215
[38] Zhu, X.; Ye, W. B.; Li, T. Y., The elastic critical pressure prediction of submerged cylindrical shell using wave propagation method, Ocean Eng, 58, 22-26 (2013)
[39] Zhang, S.; Li, T.; Xiang, Z., Far field acoustic radiation and vibration analysis of combined shells submerged at finite depth from free surface, Ocean Eng.252, 111198 (2022)
[40] Seybert, A. F.; Soenarko, B.; Rizzo, F. J., An advanced computational method for radiation and scattering of acoustic waves in three dimensions, J. Acoust. Soc. Am., 77, 2, 362-368 (1985) · Zbl 0574.73038
[41] Soenarko, B., A boundary element formulation for radiation of acoustic waves from axisymmetric bodies with arbitrary boundary conditions, J. Acoust. Soc. Am., 93, 2, 631-639 (1993)
[42] Xie, K.; Meixia, C.; Linke, Z., A unified semi-analytic method for vibro-acoustic analysis of submerged shells of revolution, Ocean Eng, 189, 106345 (2019)
[43] Seriani, G.; Enrico, P., Spectral element method for acoustic wave simulation in heterogeneous media, Finite Elem. Anal. Des., 16, 3-4, 337-348 (1994) · Zbl 0810.73079
[44] Schenck-Harry, A., Improved integral formulation for acoustic radiation problems, J. Acoust. Soc. Am., 44, 1, 41-58 (1968) · Zbl 0187.50302
[45] Xu, J., Submarine Strength, 45-50 (1980), National Defense Industry Press
[46] Zhang, S.; Xiang, Z.; Tianyun, Li, A unified solution for free vibration analysis of beam-plate-shell combined structures with general boundary conditions, Int. J. Struct. Stab. Dyn., 22, 8, 2250080 (2022) · Zbl 1537.74157
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.