×

Tracial smooth functions of non-commuting variables and the free Wasserstein manifold. (English) Zbl 1502.46052

Summary: Using new spaces of tracial non-commutative smooth functions, we formulate a free probabilistic analog of the Wasserstein manifold on \(\mathbb{R}^d\) (the formal Riemannian manifold of smooth probability densities on \(\mathbb{R}^d)\), and we use it to study smooth non-commutative transport of measure. The points of the free Wasserstein manifold \(\mathscr{W}(\mathbb{R}^{\ast d})\) are smooth tracial non-commutative functions \(V\) with quadratic growth at \(\infty \), which correspond to minus the log-density in the classical setting. The space of non-commutative diffeomorphisms \(\mathscr{D}(\mathbb{R}^{\ast d})\) acts on \(\mathscr{W}(\mathbb{R}^{\ast d})\) by transport, and the basic relationship between tangent vectors for \(\mathscr{D}(\mathbb{R}^{\ast d})\) and tangent vectors for \(\mathscr{W}(\mathbb{R}^{*d})\) is described using the Laplacian \(L_V\) associated to \(V\) and its pseudo-inverse \(\Psi_V\) (when defined).
Following similar arguments to those of A. Guionnet and D. Shlyakhtenko [Invent. Math. 197, No. 3, 613–661 (2014; Zbl 1312.46059)], Y. Dabrowski et al. [N. Z. J. Math. 52, 259–359 (2021; Zbl 1484.46069)] and D. Jekel [Int. Math. Res. Not. 2022, No 6, 4514–4619 (2022; Zbl 1496.46067)], we prove the existence of smooth transport along any path \(t \mapsto V_t\) when \(V_t\) is sufficiently close to \((1/2) \sum_j\mathrm{tr}(x_j^2)\), as well as smooth triangular transport. The two main ingredients are (1) the construction of \(\Psi_V\) through the heat semigroup and (2) the theory of free Gibbs laws, that is, non-commutative laws maximizing the free entropy minus the expectation with respect to \(V\). We conclude with a mostly heuristic discussion of the smooth structure on \(\mathscr{W}(\mathbb{R}^{\ast d})\) and hence of the free heat equation, optimal transport equations, incompressible Euler equation, and inviscid Burgers’ equation.

MSC:

46L54 Free probability and free operator algebras
46L52 Noncommutative function spaces
35Q49 Transport equations
94A17 Measures of information, entropy
58D99 Spaces and manifolds of mappings (including nonlinear versions of 46Exx)

References:

[1] A. B. Aleksandrov and V. V. Peller, Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities, Indiana Univ. Math. J. 59 (2010), 1451-1490. · Zbl 1223.47015
[2] A. B. Aleksandrov and V. V. Peller, Operator Hölder-Zygmund functions, Adv. Math. 224 (2010), 910-966. · Zbl 1193.47017
[3] A. B. Aleksandrov and V. V. Peller, Multiple operator integrals, Haagerup and Haagerup-like tensor products, and operator ideals, Bull. London Math. Soc. 49 (2017), 463-479. · Zbl 1441.47022
[4] A. B. Aleksandrov, F. L. Nazarov, and V. V. Peller, Functions of noncommuting self-adjoint operators under perturbation and estimates of triple operator integrals, Adv. Math. 295 (2016), 1-52. · Zbl 1359.47012
[5] G. W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Random Matrices, Cambridge Stud. Adv. Math., Cambridge Univ. Press, 2009.
[6] V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), 319-361. · Zbl 0148.45301
[7] P. Biane, M. Capitaine, and A. Guionnet, Large deviation bounds for matrix Brownian motion, Invent. Math. 152 (2003), 433-459. · Zbl 1017.60026
[8] P. Biane, Free Brownian motion, free stochastic calculus and random matrices, in: D.-V. Voiculescu (ed.), Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun. 12, Amer. Math. Soc., Providence, RI, 1997, 1-19. · Zbl 0873.60056
[9] P. Biane and R. Speicher, Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, Probab. Theory Related Fields 112 (1998), 373-409. · Zbl 0919.60056
[10] P. Biane and R. Speicher, Free diffusions, free entropy and free Fisher information, Ann. Inst. Henri Poincaré Probab. Statist. 37 (2001), 581-606. · Zbl 1020.46018
[11] P. Biane and D.-V. Voiculescu, A free probability analogue of the Wasserstein metric on the trace-state space, Geom. Funct. Anal. 11 (2001), 1125-1138. · Zbl 1020.46020
[12] S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10 (2000), 1028-1052. · Zbl 0969.26019
[13] V. I. Bogachev, A. V. Kolesnikov, and K. V. Medvedev, Triangular transformations of measures, Sb. Math. 196 (2005), 309-335. · Zbl 1072.28010
[14] G. Borot and A. Guionnet, Asymptotic expansion of β matrix models in the multi-cut regime, arXiv:1303.1045 (2013). · Zbl 1344.60012
[15] G. Borot and A. Guionnet, Asymptotic expansion of β matrix models in the one-cut regime, Comm. Math. Phys. 317 (2013), 447-483. · Zbl 1344.60012
[16] G. Borot, A. Guionnet, and K. K. Kozlowski, Large-N asymptotic expansion for mean field models with Coulomb gas interaction, Int. Math. Res. Notices 2015, 10451-10524. · Zbl 1332.82069
[17] A. Boutet de Monvel, L. Pastur, and M. Shcherbina, On the statistical mechanics approach in the random matrix theory: Integrated density of states, J. Statist. Phys. 79 (1995), 585-611. · Zbl 1081.82569
[18] H. J. Brascamp and E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal. 22 (1976), 366-389. · Zbl 0334.26009
[19] Y. Brenier and D. Vorotnikov, On optimal transport of matrix-valued measures, SIAM J. Math. Anal. 52 (2020), 2849-2873. · Zbl 1460.49036
[20] N. P. Brown, Finite free entropy and free group factors, Int. Math. Res. Notices 28 (2005), 1709-1715. · Zbl 1091.46041
[21] E. A. Carlen and J. Maas, An analog of the 2-Wasserstein metric in non-commutative probability under which the fermionic Fokker-Planck equation is the gradient flow for entropy, Comm. Math. Phys. 331 (2014), 887-926. · Zbl 1297.35241
[22] G. Cébron, Free convolution operators and free hall transform, J. Funct. Anal. 265 (2013), 2645-2708. · Zbl 1294.46058
[23] Y. Chen, T. T. Georgiou, and A. Tannenbaum, Matrix optimal mass transport: A quantum mechanical approach, IEEE Transactions on Automatic Control 63 (2018), 2612-2619. · Zbl 1423.49043
[24] S.-N. Chow, W. Li, and H. Zhou, A discrete Schrödinger equation via optimal transport on graphs, J. Funct. Anal. 276 (2019), 2440-2469. · Zbl 1414.35205
[25] Y. Chow, W. Li, S. Osher and W. Yin, Algorithm for Hamilton-Jacobi equations in density space via a generalized Hopf formula, J. Sci. Comput. 80 (2019), 1195-1239. · Zbl 1422.91102
[26] B. Collins, A. Guionnet, and F. Parraud, On the operator norm of non-commutative poly-nomials in deterministic matrices and iid GUE matrices, arXiv:1912.04588 (2019).
[27] R. Correa da Silva, Lecture notes on non-commutative Lp-spaces, arXiv:1803.02390 (2018).
[28] Y. Dabrowski, A Laplace principle for Hermitian Brownian motion and free entropy I: the convex functional case, arXiv:1604.06420 (2017).
[29] Y. Dabrowski, A non-commutative path space approach to stationary free stochastic differential equations, arXiv:1006.4351 (2010).
[30] Y. Dabrowski, A. Guionnet, and D. Shlyakhtenko, Free transport for convex potentials, New Zeland J. Math. 52 (2021), 251-359. · Zbl 1484.46069
[31] B. Dadoun and P. Youssef, Maximal correlation and monotonicity of free entropy and of Stein discrepancy, Electron. Commun. Probab. 26 (2021), art. 24, 10 pp. · Zbl 1491.46062
[32] J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France 81 (1953), 9-39. · Zbl 0050.11501
[33] B. K. Driver, B. C. Hall, and T. Kemp, The large-N limit of the Segal-Bargmann transform on Un, J. Funct. Anal. 265 (2013), 2585-2644. · Zbl 1286.22010
[34] D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102-163. · Zbl 0211.57401
[35] I. Farah, B. Hart, and D. Sherman, Model theory of operator algebras II: model theory, Israel J. Math. 201 (2014), 477-505. · Zbl 1301.03037
[36] B. Fuglede and R. V. Kadison, Determinant theory in finite factors, Ann. Math. (2) 55 (1952), 520-530. · Zbl 0046.33604
[37] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083. · Zbl 0318.46049
[38] A. Guionnet and E. Maurel-Segala, Combinatorial aspects of random matrix models, ALEA Lat. Amer. J. Probab. Math. Statist. 1 (2006), 241-279. · Zbl 1110.15021
[39] A. Guionnet and D. Shlyakhtenko, Free diffusions and matrix models with strictly convex interaction, Geom. Funct. Anal. 18 (2009), 1875-1916. · Zbl 1187.46056
[40] A. Guionnet and D. Shlyakhtenko, Free monotone transport, Invent. Math. 197 (2014), 613-661. · Zbl 1312.46059
[41] A. Guionnet and O. Zeitouni, Concentration of the spectral measure for large matrices, Electron. Comm. Probab. 5 (2000), 119-136. · Zbl 0969.15010
[42] F. Hiai and Y. Ueda, Free transportation cost inequalities for noncommutative multi-variables, Infin. Dimens. Anal., Quantum Probab. Related Topics 9 (2006), 391-412. · Zbl 1107.46045
[43] F. Hiai, Free analog of pressure and its legendre transform, Comm. Math. Phys. 255 (2005), 229-252. · Zbl 1076.46051
[44] F. Hiai, D. Petz, and Y. Ueda, Free transportation cost inequalities via random matrix approximation, Probab. Theory Related Fields 130 (2004), 199-221. · Zbl 1060.46046
[45] D. Jekel, An elementary approach to free entropy theory for convex potentials, Anal. PDE 13 (2020), 2289-2374. · Zbl 1471.46064
[46] D. Jekel, Conditional expectation, entropy, and transport for convex Gibbs laws in free probability, Int. Math. Res. Notices 2022, 4514-4619. · Zbl 1496.46067
[47] D. Jekel, Evolution equations in non-commutative probability, Ph.D. thesis, Univ. of Cali-fornia, Los Angeles, 2020.
[48] Z. Ji, A. Natarajan, T. Vidick, J. Wright, and H. Yuen, MIP*=RE, arXiv:2001.04383 (2020).
[49] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal. 29 (1998), 1-17. · Zbl 0915.35120
[50] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory, Grad. Stud. in Math. 15, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0888.46039
[51] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. II: Advanced Theory, Grad. Stud. in Math. 16, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0888.46039
[52] T. Kemp, The large-N limits of Brownian motions on GLN , Int. Math. Res. Notices 2016, 4012-4057. · Zbl 1404.60111
[53] T. Kemp, Heat kernel empirical laws on Un and GLN , J. Theoret. Probab. 30 (2017), 397-451. · Zbl 1414.60006
[54] J. D. Lafferty, The density manifold and configuration space quantization, Trans. Amer. Math. Soc. 305 (1988), 699-741. · Zbl 0642.58009
[55] M. Ledoux, A heat semigroup approach to concentration on the sphere and on a compact Riemannian manifold, Geom. Funct. Anal. 2 (1992), 221-224. · Zbl 0752.53039
[56] W. Lee, W. Li, and S. Osher, Computational mean-field information dynamics associated with reaction diffusion equations, arXiv:2107.11501 (2021).
[57] U. Leron, Trace identities and polynomial identities of n × n matrices, J. Algebra 42 (1976), 369-377. · Zbl 0347.16011
[58] S. Li, X.-D. Li, and Y.-X. Xie, On the law of large numbers for the empirical measure process of generalized Dyson Brownian motion, J. Statist. Phys. 181 (2020), 1277-1305. · Zbl 1460.60108
[59] W. Li, Transport information geometry: Riemannian calculus on probability simplex, Inf. Geom. 5 (2022), 161-207. · Zbl 1493.49047
[60] W. Li, Diffusion hypercontractivity via generalized density manifold, arXiv:1907.12546 (2019).
[61] W. Li, Hessian metric via transport information geometry, J. Math. Phys. 62 (2021), no. 3, art. 033301, 23 pp. · Zbl 1469.53025
[62] M. Maïda and E. Maurel-Segala, Free transport-entropy inequalities for nonconvex potentials and application to concentration for random matrices, Probab. Theory Related Fields 159 (2014), 329-356. · Zbl 1305.46057
[63] J. A. Mingo and R. Speicher, Free Probability and Random Matrices, Fields Inst. Monogr. 35, Springer, New York, 2017. · Zbl 1387.60005
[64] B. Nelson, Free monotone transport without a trace, Comm. in Math. Phys. 334 (2015), 1245-1298. · Zbl 1330.46066
[65] B. Nelson, Free transport for finite depth subfactor planar algebras, J. Funct. Anal. 268 (2015), 2586-2620. · Zbl 1406.46051
[66] A. Nica and R. Speicher, Lectures on the Combinatorics of Free Probability, London Math. Soc. Lecture Note Ser. 335, Cambridge Univ. Press, Cambridge, 2006. · Zbl 1133.60003
[67] E. Nikitopoulos, Noncommutative C k functions and Fréchet derivatives of operator functions, arXiv:2011.03126 (2020).
[68] L. Ning, T. T. Georgiou, and A. Tannenbaum, On matrix-valued Monge-Kantorovich optimal mass transport, IEEE Trans. Automat. Control 60 (2015), 373-382. · Zbl 1360.49037
[69] F. Otto, The geometry of dissipative evolution equations the porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. · Zbl 0984.35089
[70] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), 361-400. · Zbl 0985.58019
[71] N. Ozawa, There is no separable universal II1 factor, Proc. Amer. Math. Soc. 132 (2004), 487-490. · Zbl 1041.46045
[72] F. Parraud, Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices, arXiv:2011.04146 (2020).
[73] V. V. Peller, Multiple operator integrals and higher operator derivatives, J. Funct. Anal. 233 (2006), 515-544. · Zbl 1102.46024
[74] G. Pisier and Q. Xu, Non-commutative L p -spaces, in: Williams B. Johnson and Joram Lindenstrauss, editors, Handbook of the geometry of Banach spaces, volume 2, Elsevier, 2003, 1459-1517. · Zbl 1046.46048
[75] C. Procesi, The invariant theory of n × n matrices, Adv. Math. 19 (1976), 306-381. · Zbl 0331.15021
[76] E. M. Rains, Combinatorial properties of Brownian motion on the compact classical groups, J. Theoret. Probab. 10 (1997), 659-679. · Zbl 1002.60504
[77] Y. P. Razmyslov, Trace identities of full matrix algebras over a field of characteristic zero, Math. USSR-Izv. 8 (1974), 727-760. · Zbl 0311.16016
[78] Y. P. Razmyslov, Trace identities and central polynomials in the matrix superalgebras M n,k , Math. of the USSR-Sb. 56 (1987), 187-206. · Zbl 0604.16019
[79] A. Sengupta, Traces in two-dimensional QCD: the large-N limit, in: Traces in Number Theory, Geometry and Quantum Fields, Aspects of Math. E38, Vieweg, Wiesbaden, 2008, 193-212. · Zbl 1146.81332
[80] D. Shlyakhtenko, Free Fisher information for non-tracial states, Pacific J. Math. 211 (2003), 375-390. · Zbl 1058.46045
[81] D. Shlyakhtenko, Lower estimates on microstates free entropy dimension, Anal. PDE 2 (2009), 119-146. · Zbl 1191.46053
[82] B. Simon, Trace Ideals and Their Applications, 2nd ed., Math. Surveys Monogr. Amer. Math. Soc., Providence, RI, 2005. · Zbl 1074.47001
[83] R. Speicher, A new example of ’independence’ and ’white noise’, Probab. Theory Related Fields 84 (1990), 141-159. · Zbl 0671.60109
[84] T. Tao, An Introduction to Random Matrix Theory, Grad. Texts in Math. 132, Amer. Math. Soc., 2012. · Zbl 1256.15020
[85] C. Villani, Optimal Transport: Old and New, Grundlehren Math. Wiss. 338, Springer, Berlin, 2009. · Zbl 1156.53003
[86] D.-V. Voiculescu, Symmetries of some reduced free product C * -algebras, in: H. Araki et al. (eds.), Operator Algebras and Their Connections with Topology and Ergodic Theory (Buşteni, 1983), Springer, Berlin, 1985, 556-588. · Zbl 0618.46048
[87] D.-V. Voiculescu, Addition of certain non-commuting random variables, J. Funct. Anal. 66 (1986), 323-346. · Zbl 0651.46063
[88] D.-V. Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991), 201-220. · Zbl 0736.60007
[89] D.-V. Voiculescu, The analogues of entropy and Fisher’s information in free probability, I, Comm. Math. Phys. 155 (1993), 71-92. · Zbl 0781.60006
[90] D.-V. Voiculescu, The analogues of entropy and of Fisher’s information in free probability, II, Invent. Math. 118 (1994), 411-440. · Zbl 0820.60001
[91] D.-V. Voiculescu, The analogues of entropy and of Fisher’s information in free probability V, Invent. Math. 132 (1998), 189-227. · Zbl 0930.46053
[92] D.-V. Voiculescu, A strengthened asymptotic freeness result for random matrices with appli-cations to free entropy, Int. Math. Res. Notices 1998, 41-63. · Zbl 0895.60004
[93] D.-V. Voiculescu, The analogues of entropy and of Fisher’s information measure in free probability theory, VI: Liberation and mutual free information, Adv. Math. 146 (1999), 101-166. · Zbl 0956.46045
[94] D.-V. Voiculescu, Cyclomorphy, Int. Math. Res. Notices 2002, 299-332. · Zbl 1027.46089
[95] D.-V. Voiculescu, Free entropy, Bull. London Math. Soc. 34 (2002), 257-278. · Zbl 1036.46051
[96] D.-V. Voiculescu, Free analysis questions I: duality transform for the coalgebra of ∂X:B, Int. Math. Res. Notices 2004 (2004), 793-822. · Zbl 1084.46053
[97] D.-V. Voiculescu, Symmetries arising from free probability theory, in: P. Cartier et al. (eds.), Frontiers in Number Theory, Physics, and Geometry I, Springer, Berlin, 2006, 231-243. · Zbl 1155.46036
[98] D.-V. Voiculescu, A hydrodynamic exercise in free probability: setting up free Euler equations, Expo. Math. 38 (2020), 271-283. · Zbl 1461.46066
[99] D.-V. Voiculescu, K. J. Dykema, and A. Nica, Free Random Variables, CRM Monogr. Ser. 1, Amer. Math. Soc., Providence, RI, 1992. · Zbl 0795.46049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.