×

A modified micro-macro constitutive model for porous rocks with pressure-sensitive matrix by considering a new hardening law. (English) Zbl 1512.74028

Summary: This paper aims mainly at providing an incremental elastoplastic constitutive model for heterogeneous porous rock-like materials in the frame of micromechanics. The studied material is considered to be made up of randomly distributed spherical pores embedded in a pressure-sensitive solid matrix obeying Drucker-Prager yield function. The effective elastic properties of porous rocks are obtained by the use of Mori and Tanaka homogenization scheme, which are on function of the bulk and shear moduli of the solid matrix and of the value of porosity. For the macroscopic nonlinear phase, a limit analysis-based macroscopic criterion is adopted to derive the basic constitutive rule by considering an associated plastic flow rule. In order to capture the typical hardening effects of rocks, an originally proposed hardening function of the solid matrix is also taken into consideration, which is related on the accumulated equivalent plastic strain. In order to verify its accuracy, the proposed micro-macro constitutive model is implemented by a numerical procedure including elastic predictions and plastic corrections and compared to experimental results of triaxial compression tests of sandstone with different confining pressures. It is observed that the numerical simulation is in accord with the experimental data, indicating that the obtained model is able to predict the main mechanical behaviours of rock-like materials.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L10 Soil and rock mechanics
Full Text: DOI

References:

[1] Yang, X.; Wang, J.; Zhu, C.; He, M.; Gao, Y., Effect of wetting and drying cycles on microstructure of rock based on sem, Environmental Earth Sciences, 78, 6, 1-10 (2019) · doi:10.1007/s12665-019-8191-6
[2] Li, A.; Dai, F.; Liu, Y.; Du, H.; Jiang, R., Dynamic stability evaluation of underground cavern sidewalls against flexural toppling considering excavation-induced damage, Tunnelling and Underground Space Technology, 112 (2021) · doi:10.1016/j.tust.2021.103903
[3] Robinet, J.-C., Minéralogie, porosité et diffusion des solutés dans l’argilite du callovo-oxfordien de bure (meuse, haute-marne, france) de l’échelle centimétrique à micrométrique (2008), Poitiers, France: University of Poitiers, Poitiers, France, Ph.D. Thesis
[4] Bésuelle, P.; Desrues, J.; Raynaud, S., Experimental characterisation of the localisation phenomenon inside a vosges sandstone in a triaxial cell, International Journal of Rock Mechanics and Mining Sciences, 37, 8, 1223-1237 (2000) · doi:10.1016/s1365-1609(00)00057-5
[5] Homand, S.; Shao, J. F., Mechanical behaviour of a porous chalk and water/chalk interaction. part i: experimental study, Oil & Gas Science and Technology, 55, 6, 591-598 (2000) · doi:10.2516/ogst:2000044
[6] Zhu, C.; He, M.; Karakus, M.; Zhang, X.; Tao, Z., Numerical simulations of the failure process of anaclinal slope physical model and control mechanism of negative Poisson’s ratio cable, Bulletin of Engineering Geology and the Environment, 80, 4, 3365-3380 (2021) · doi:10.1007/s10064-021-02148-y
[7] Wang, Y.; Feng, W. K.; Hu, R. L.; Li, C. H., Fracture evolution and energy characteristics during marble failure under triaxial fatigue cyclic and confining pressure unloading (fc-cpu) conditions, Rock Mechanics and Rock Engineering, 54, 2, 799-818 (2021) · doi:10.1007/s00603-020-02299-6
[8] Tao, Z.; Zhu, C.; He, M.; Karakus, M., A physical modeling-based study on the control mechanisms of negative Poisson’s ratio anchor cable on the stratified toppling deformation of anti-inclined slopes, International Journal of Rock Mechanics and Mining Sciences, 138 (2021) · doi:10.1016/j.ijrmms.2021.104632
[9] Zhu, C.; He, M.-C.; Karakus, M.; Zhang, X.-H.; Guo, Z., The collision experiment between rolling stones of different shapes and protective cushion in open-pit mines, Journal of Mountain Science, 18, 5, 1391-1403 (2021) · doi:10.1007/s11629-020-6380-0
[10] Collin, F.; Cui, Y. J.; Schroeder, C.; Charlier, R., Mechanical behaviour of lixhe chalk partly saturated by oil and water: experiment and modelling, International Journal for Numerical and Analytical Methods in Geomechanics, 26, 9, 897-924 (2002) · Zbl 1052.74555 · doi:10.1002/nag.229
[11] Aubertin, M.; Yahya, O. M. L.; Julien, M., Modeling mixed hardening of alkali halides with a modified version of an internal state variables model, International Journal of Plasticity, 15, 10, 1067-1088 (1999) · Zbl 0977.74504 · doi:10.1016/s0749-6419(99)00025-x
[12] Khoei, A. R.; Azami, A. R., A single cone-cap plasticity with an isotropic hardening rule for powder materials, International Journal of Mechanical Sciences, 47, 1, 94-109 (2005) · Zbl 1192.74041 · doi:10.1016/j.ijmecsci.2004.11.002
[13] Gurson, A. L., Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology, 99, 1, 2-15 (1977) · doi:10.1115/1.3443401
[14] Gologanu, M.; Leblond, J.-B.; Perrin, G.; Devaux, J., Recent extensions of gurson’s model for porous ductile metals, Continuum Micromechanics, 61-130 (1997), New York, NY, USA: Springer, New York, NY, USA · Zbl 0882.73004 · doi:10.1007/978-3-7091-2662-2_2
[15] Monchiet, V.; Kondo, D., Combined voids size and shape effects on the macroscopic criterion of ductile nanoporous materials, International Journal of Plasticity, 43, 20-41 (2013) · doi:10.1016/j.ijplas.2012.10.007
[16] Wen, J.; Huang, Y.; Hwang, K. C.; Liu, C.; Li, M., The modified gurson model accounting for the void size effect, International Journal of Plasticity, 21, 2, 381-395 (2005) · Zbl 1114.74380 · doi:10.1016/j.ijplas.2004.01.004
[17] Monchiet, V.; Cazacu, O.; Charkaluk, E.; Kondo, D., Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, International Journal of Plasticity, 24, 7, 1158-1189 (2008) · Zbl 1421.74023 · doi:10.1016/j.ijplas.2007.08.008
[18] Guo, T. F.; Faleskog, J.; Shih, C. F., Continuum modeling of a porous solid with pressure-sensitive dilatant matrix, Journal of the Mechanics and Physics of Solids, 56, 6, 2188-2212 (2008) · Zbl 1171.74338 · doi:10.1016/j.jmps.2008.01.006
[19] Maghous, S.; Dormieux, L.; Barthélémy, J. F., Micromechanical approach to the strength properties of frictional geomaterials, European Journal of Mechanics-A/Solids, 28, 1, 179-188 (2009) · Zbl 1155.74381 · doi:10.1016/j.euromechsol.2008.03.002
[20] Anoukou, K.; Pastor, F.; Dufrenoy, P.; Kondo, D., Limit analysis and homogenization of porous materials with mohr-coulomb matrix. part I: theoretical formulation, Journal of the Mechanics and Physics of Solids, 91 (2016) · Zbl 1482.74068 · doi:10.1016/j.jmps.2016.01.018
[21] Cheng, L.; Jia, Y.; Oueslati, A.; de Saxcé, G.; Kondo, D., A bipotential-based limit analysis and homogenization of ductile porous materials with non-associated drucker-prager matrix, Journal of the Mechanics and Physics of Solids, 77, 1-26 (2015) · Zbl 1349.74068 · doi:10.1016/j.jmps.2014.12.004
[22] Sun, Y.; Duo, W., A lower bound approach to the yield loci of porous materials, Acta Mechanica Sinica, 5, 3, 237-243 (1989) · doi:10.1007/BF02487985
[23] Sun, Y.; Wang, D., Analysis of shear localization in porous materials based on a lower bound approach, International Journal of Fracture, 71, 1, 71-83 (1989) · doi:10.1007/BF00019342
[24] Cheng, L.; de Saxcé, G.; Kondo, D., A stress-based variational model for ductile porous materials, International Journal of Plasticity, 55, 133-151 (2014) · doi:10.1016/j.ijplas.2013.10.003
[25] Shen, W. Q.; Oueslati, A.; de Saxcé, G., Macroscopic criterion for ductile porous materials based on a statically admissible microscopic stress field, International Journal of Plasticity, 70, 60-76 (2015) · doi:10.1016/j.ijplas.2015.02.012
[26] Zhang, J.; Shen, W. Q.; Oueslati, A.; De Saxcé, G., Shakedown of porous materials, International Journal of Plasticity, 95, 123-141 (2017) · doi:10.1016/j.ijplas.2017.04.003
[27] Zhang, J.; Oueslati, A.; Shen, W. Q.; De Saxcé, G., Shakedown of porous material with drucker-prager dilatant matrix under general cyclic loadings, Composite Structures, 220, 566-579 (2019) · doi:10.1016/j.compstruct.2019.03.029
[28] Zhang, J.; Shao, J. F.; Zhu, Q. Z.; De Saxcé, G., A variational-based homogenization model for plastic shakedown analysis of porous materials with a large range of porosity, International Journal of Mechanical Sciences, 199 (2021) · doi:10.1016/j.ijmecsci.2021.106429
[29] Hill, R., Continuum micro-mechanics of elastoplastic polycrystals, Journal of the Mechanics and Physics of Solids, 13, 2, 89-101 (1965) · Zbl 0127.15302 · doi:10.1016/0022-5096(65)90023-2
[30] Shen, W. Q.; Shao, J. F.; Kondo, D.; Gatmiri, B., A micro-macro model for clayey rocks with a plastic compressible porous matrix, International Journal of Plasticity, 36, 64-85 (2012) · doi:10.1016/j.ijplas.2012.03.006
[31] Shen, W. Q.; Kondo, D.; Dormieux, L.; Shao, J. F., A closed-form three scale model for ductile rocks with a plastically compressible porous matrix, Mechanics of Materials, 59, 6, 73-86 (2013) · doi:10.1016/j.mechmat.2012.12.008
[32] Cao, Y. J.; Shen, W. Q.; Burlion, N.; Shao, J. F., Effects of inclusions and pores on plastic and viscoplastic deformation of rock-like materials, International Journal of Plasticity, 108, 107-124 (2018) · doi:10.1016/j.ijplas.2018.04.015
[33] Shao, J. F.; Zhu, Q. Z.; Su, K., Modeling of creep in rock materials in terms of material degradation, Computers and Geotechnics, 30, 7, 549-555 (2003) · doi:10.1016/s0266-352x(03)00063-6
[34] Abou-Chakra, G.; Cormery, F.; Shao, J. F.; Kondo, D., A micromechanical model of elastoplastic and damage behavior of a cohesive geomaterial, Physics & Chemistry of the Earth, 45, 5, 1406-1429 (2008) · Zbl 1169.74563 · doi:10.1016/j.ijsolstr.2007.09.025
[35] Cao, Y. J.; Shen, W. Q.; Shao, J. F.; Wang, W., A multi-scale model of plasticity and damage for rock-like materials with pores and inclusions, International Journal of Rock Mechanics and Mining Sciences, 138 (2021) · doi:10.1016/j.ijrmms.2020.104579
[36] Shen, W. Q.; Shao, J. F., A micromechanical model of inherently anisotropic rocks, Computers and Geotechnics, 65, 73-79 (2015) · doi:10.1016/j.compgeo.2014.11.016
[37] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, 5, 571-574 (1973) · doi:10.1016/0001-6160(73)90064-3
[38] Hill, R., The Mathematical Theory Of Plasticity, 11 (1998), Oxford, Uk: Oxford University Press, Oxford, Uk · Zbl 0923.73001
[39] Han, B.; Shen, W. Q.; Xie, S. Y.; Shao, J. F., Plastic modeling of porous rocks in drained and undrained conditions, Computers and Geotechnics, 117 (2020) · doi:10.1016/j.compgeo.2019.103277
[40] Zhao, L.-Y.; Zhu, Q.-Z.; Shao, J.-F., A micro-mechanics based plastic damage model for quasi-brittle materials under a large range of compressive stress, International Journal of Plasticity, 100, 156-176 (2018) · doi:10.1016/j.ijplas.2017.10.004
[41] Liu, S.-L.; Chen, H.-R.; Yuan, S.-S.; Zhu, Q.-Z., Experimental investigation and micromechanical modeling of the brittle-ductile transition behaviors in low-porosity sandstone, International Journal of Mechanical Sciences, 179 (2020) · doi:10.1016/j.ijmecsci.2020.105654
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.