×

Stability of an unsupported vertical trench in sloping ground. (English) Zbl 1456.74122

Summary: The lower bound limit analysis technique in combination with the finite elements is implemented to generate the stability numbers for an unsupported vertical long trench in a sloping ground, associated with the critical state of shear failure in a cohesive-frictional soil medium. The computational results are derived for various combinations of normalized excavation depth, friction angle of soil and slope angle. From the results of the analysis, it can be noted that with the increase in the slope angle the stability of the unsupported trench reduces drastically. With an enhancement in the magnitude of slope angle, the plastic zone in the vicinity of the trench becomes increasingly asymmetric. The results provided in this paper are expected to be beneficial from the point of view of designing vertical trench in sloping ground.

MSC:

74L10 Soil and rock mechanics
74G60 Bifurcation and buckling
74R20 Anelastic fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Taylor, DW, Fundamentals of soil mechanics (1948), New York: Wiley, New York
[2] Spencer, E., A method of analysis of the stability of embankments assuming parallel inter-slice forces, Géotechnique, 17, 1, 11-26 (1967) · doi:10.1680/geot.1967.17.1.11
[3] Heyman, J., The stability of a vertical cut, Int J Mech Sci, 15, 10, 845-854 (1973) · doi:10.1016/0020-7403(73)90073-8
[4] Chen, WF, Limit analysis and soil plasticity (1975), Amsterdam: Elsevier, Amsterdam · Zbl 0354.73033
[5] Cascini, L., A numerical solution for the stability of a vertical cut on a purely cohesive medium, Int J Numer Anal Methods Geomech, 7, 1, 129-134 (1983) · doi:10.1002/nag.1610070112
[6] Banerjee, PK; Kumbhojkar, AS; Yousif, NB, Finite element analysis of the stability of a vertical cut using an anisotropic soil model, Can Geotech J, 25, 1, 119-127 (1988) · doi:10.1139/t88-012
[7] Pastor, J.; Thai, T-H; Francescato, P., New bounds for the height limit of a vertical slope, Int J Numer Anal Methods Geomech, 24, 2, 165-182 (2000) · Zbl 0960.74048 · doi:10.1002/(SICI)1096-9853(200002)24:2<165::AID-NAG62>3.0.CO;2-A
[8] Lyamin, AV; Sloan, SW, Lower bound limit analysis using non-linear programming, Int J Numer Methods Eng, 55, 5, 573-611 (2002) · Zbl 1076.74571 · doi:10.1002/nme.511
[9] de Buhan P, Dormieux L, Maghous S (1993) Stabilité d’un talus vertical: amélioration de la borne cinématique. Comptes rendus de l’Academie des Sciences, t 317, Série II, 131-136 (Paris) · Zbl 0779.73047
[10] Bekaert, A., Improvement of the kinematic bound for the stability of a vertical cut-off, Mech Res Commun, 22, 6, 533-540 (1995) · Zbl 0843.73062 · doi:10.1016/0093-6413(95)00058-5
[11] Lyamin, AV; Sloan, SW, Upper bound limit analysis using linear finite elements and non-linear programming, Int J Numer Anal Methods Geomech, 26, 2, 181-216 (2002) · Zbl 1112.74527 · doi:10.1002/nag.198
[12] Kumar, J.; Chakraborty, D., Stability number for an unsupported vertical circular excavation in c-ϕ soil, Comput Geotech, 39, 79-84 (2012) · doi:10.1016/j.compgeo.2011.08.002
[13] Chakraborty, D.; Kumar, J., Stability numbers for a vertical circular excavation with surcharge, Proc Natl Acad Sci India (Sect A Phys Sci), 87, 1, 115-123 (2017) · doi:10.1007/s40010-016-0311-z
[14] Sloan, SW, Lower bound limit analysis using finite-elements and linear programming, Int J Numer Anal Methods Geomech, 12, 1, 61-77 (1988) · Zbl 0626.73117 · doi:10.1002/nag.1610120105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.