×

Coupled adjoint-based sensitivities in large-displacement fluid-structure interaction using algorithmic differentiation. (English) Zbl 07874743

Summary: A methodology for the calculation of gradients with respect to design parameters in general fluid-structure interaction problems is presented. It is based on fixed-point iterations on the adjoint variables of the coupled system using algorithmic differentiation. This removes the need for the construction of the analytic Jacobian for the coupled physical problem, which is the usual limitation for the computation of adjoints in most realistic applications. The formulation is shown to be amenable to partitioned solution methods for the adjoint equations. It also poses no restrictions to the nonlinear physics in either the fluid or structural field, other than the existence of a converged solution to the primal problem from which to compute the adjoints. We demonstrate the applicability of this procedure and the accuracy of the computed gradients on coupled problems involving viscous flows with geometrical and material nonlinearities in the structural domain.
{Copyright © 2017 John Wiley & Sons, Ltd.}

MSC:

74Fxx Coupling of solid mechanics with other effects
74Sxx Numerical and other methods in solid mechanics
76Mxx Basic methods in fluid mechanics

Software:

TAPENADE; Adjoint
Full Text: DOI

References:

[1] Sobieszczanski‐SobieskiJ. Sensitivity of complex, internally coupled systems. AIAA J. 1990;28(1):153‐160.
[2] PironneauO. On optimum design in fluid mechanics. J Fluid Mech. 1974;64(1):97‐110. · Zbl 0281.76020
[3] JamesonA. Aerodynamic design via control theory. J Sci Comput. 1988;3(3):233‐260. · Zbl 0676.76055
[4] AdelmanHM, HaftkaRT. Sensitivity analysis of discrete structural systems. AIAA J. 1986;24(5):823‐832.
[5] MartinsJ, SturdzaP, AlonsoJ. The complex‐step derivative approximation. ACM Trans Math Software. 2003;29(3):245‐262. · Zbl 1072.65027
[6] BarcelosM, MauteK. Aeroelastic design optimization for laminar and turbulent flows. Comput Meth Appl Mech Eng. 2008;197(19-20):1813‐1832. · Zbl 1194.74059
[7] MauteK, NikbayM, FarhatC. Analytically based sensitivity analysis and optimization of nonlinear aeroelastic systems. In: 8th Symposium on Multidisciplinary Analysis and Optimization. Long Beach, CA; 2000. AIAA paper 2000‐4825, 10 pages.
[8] MauteK, NikbayM, FarhatC. Coupled analytical sensitivity analysis and optimization of three‐dimensional nonlinear aeroelastic systems. AIAA J. 2001;39(11):2051‐2061.
[9] MartinsJ, AlonsoJ, ReutherJ. Aero‐structural wing design optimization using high‐fidelity sensitivity analysis. In: HonlingerH (ed.), ed. Proceedings—CEAS Conference on Multidisciplinary Aircraft Design Optimization. Cologne, Germany: Confederation of European Aeroespace Societies; 2001:211‐226.
[10] MartinsJ, AlonsoJ, ReutherJ. Complete configuration aero‐structural optimization using a coupled sensitivity analysis method. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization 2002. Atlanta, GA: American Institute of Aeronautics and Astronautics Inc.; 2002. AIAA paper 2002‐5402, 14 pages.
[11] MauteK, NikbayM, FarhatC. Sensitivity analysis and design optimization of three‐dimensional non‐linear aeroelastic systems by the adjoint method. Int J Numer Methods Eng. 2003;56(6):911‐933. · Zbl 1078.74633
[12] MartinsJ, AlonsoJ, ReutherJ. A coupled‐adjoint sensitivity analysis method for high‐fidelity aero‐structural design. Optim Eng. 2005;6(1):33‐62. · Zbl 1145.76418
[13] BarcelosM, BavestrelloH, MauteK. A Schur‐Newton‐Krylov solver for steady‐state aeroelastic analysis and design sensitivity analysis. Comput Meth Appl Mech Eng. 2006;195(17‐18):2050‐2069. · Zbl 1178.76309
[14] FazzolariA, GaugerNR, BrezillonJ. Efficient aerodynamic shape optimization in MDO context. J Comput Appl Math. 2007;203(2 SPEC. ISS.):548‐560. · Zbl 1111.76045
[15] Abu‐ZuraykM, BrezillonJ. Development of the adjoint approach for aeroelastic wing optimization. Notes on Numer Fluid Mech Multi Des. 2013;121:59‐66.
[16] KenwayG, KennedyG, MartinsJ. Scalable parallel approach for high‐fidelity steady‐state aeroelastic analysis and adjoint derivative computations. AIAA J. 2014;52(5):935‐951.
[17] DegrooteJ, HojjatM, StavropoulouE, WüchnerR, BletzingerKU. Partitioned solution of an unsteady adjoint for strongly coupled fluid‐structure interactions and application to parameter identification of a one‐dimensional problem. Struct Multi Optim. 2013;47(1):77‐94. · Zbl 1274.74103
[18] PeregoM, VenezianiA, VergaraC. A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid‐structure interaction problem. SIAM J Sci Comput. 2011;33(3):1181‐1211. · Zbl 1227.92010
[19] RaulliM, MauteK. Optimization of fully coupled electrostatic‐fluid‐structure interaction problems. Comput Struct. 2005;83(2‐3):221‐233.
[20] FickP, van BrummelenE, van der ZeeK. On the adjoint‐consistent formulation of interface conditions in goal‐oriented error estimation and adaptivity for fluid‐structure interaction. Comput Meth Appl Mech Eng. 2010;199(49‐52):3369‐3385. · Zbl 1225.74085
[21] van der ZeeK, vanBrummelenE, AkkermanI, de BorstR. Goal‐oriented error estimation and adaptivity for fluid‐structure interaction using exact linearized adjoints. Comput Meth Appl Mech Eng. 2011;200(37‐40):2738‐2757. · Zbl 1230.74199
[22] BazilevsY, HsuMC, BementM. Adjoint‐based control of fluid‐structure interaction for computational steering applications. 13th Annual International Conference on Computational Science, ICCS, Vol. 18. Barcelona: Elsevier; 2013:1989‐1998.
[23] MartinsJ, AlonsoJ, ReutherJ. High‐fidelity aerostructural design optimization of a supersonic business jet. J Aircr. 2004;41(3):523‐530.
[24] PeterJ, DwightR. Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Comput Fluids. 2010;39(3):373‐391. · Zbl 1242.76301
[25] DwightR, BrezillonJ. Effect of approximations of the discrete adjoint on gradient‐based optimization. AIAA J. 2006;44(12):3022‐3031.
[26] LundE, MøllerH, JakobsenLA. Shape design optimization of stationary fluid‐structure interaction problems with large displacements and turbulence. Struct Multi Optim. 2003;25(5‐6):383‐392.
[27] GriewankA (ed.), CorlissGF (ed.), eds. Automatic Differentiation of Algorithms: Theory, Implementation, and Application, Vol. Proceedings of the first SIAM Workshop on Automatic Differentiation. Breckenridge, CO: SIAM ‐ Society for Industrial and Applied Mathematics; 1991. · Zbl 0747.00030
[28] GriewankA, WaltherA. Evaluating Derivatives. 2nd ed.Society for Industrial and Applied Mathematics, Philadelphia, PA; 2008. ISBN 978‐0‐898716‐59‐7. · Zbl 1159.65026
[29] MartaA, MaderC, MartinsJ, Van Der WeideE, AlonsoJ. A methodology for the development of discrete adjoint solvers using automatic differentiation tools. Int J Comput Fluid Dyn. 2007;21(9‐10):307‐327. · Zbl 1184.76832
[30] MaderC, MartinsJ, AlonsoJ, Van WeideE. Adjoint: an approach for the rapid development of discrete adjoint solvers. AIAA J. 2008;46(4):863‐873.
[31] MaderC, MartinsJ. Derivatives for time‐spectral computational fluid dynamics using an automatic differentiation adjoint. AIAA J. 2012;50(12):2809‐2819.
[32] OzakiI, KimuraF, BerzM. Higher‐order sensitivity analysis of finite element method by automatic differentiation. Comput Mech. 1995;16(4):223‐234. · Zbl 0845.73071
[33] AlbringT, SagebaumM, GaugerN. Development of a consistent discrete adjoint solver in an evolving aerodynamic design framework. In: 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Dallas, TX; 2015. AIAA paper 2015‐3240, 14 pages.
[34] AlbringT, SagebaumM, GaugerN. Efficient aerodynamic design using the discrete adjoint method in SU2. In: 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference; 2016. AIAA paper 2016‐3518, 15 pages.
[35] ZhouB, AlbringT, GaugerN, EconomonTD, PalaciosF, AlonsoJJ. A discrete adjoint framework for unsteady aerodynamic and aeroacoustic optimization. In: 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Dallas, TX; 2015. AIAA paper 2015‐3355, 11 pages.
[36] HoganR. Fast reverse‐mode automatic differentiation using expression templates in C++. ACM Trans Math Software. 2014;40(4). Article 26, 16 pages. · Zbl 1369.65037
[37] SanchezR, PalaciosR, EconomonT, KlineH, AlonsoJ, PalaciosF. Towards a fluid‐structure interaction solver for problems with large deformations within the open‐source SU2 suite. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech. San Diego, CA; 2016. AIAA paper 2016‐0205, 31 pages.
[38] SanchezR, KlineH, ThomasD, et al. Assessment of the fluid‐structure interaction capabilities for aeronautical applications of the open‐source solver SU2. In: PapadrakakisM (ed.), PapadopoulosV (ed.), StefanouG (ed.), PlevrisV (ed.), eds. VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016). Crete Island, Greece: Institute of Structural Analysis and Antiseismic Research; 2016:1498‐1529.
[39] PalaciosF, ColonnoMR, AranakeAC, et al. Stanford university unstructured (SU2): an open‐source integrated computational environment for multi‐physics simulation and design. In: AIAA 51st Aerospace Sciences Meeting. Grapevine, TX; 7‐10 January; 2013. AIAA paper 2013‐0287, 60 pages.
[40] PalaciosF, EconomonT, AranakeA, et al. Stanford university unstructured (SU2): open‐source analysis and design technology for turbulent flows. In: AIAA 52nd Aerospace Sciences Meeting, SciTech. National Harbor, MD; 13‐17 January; 2014. AIAA paper 2014‐0243, 33 pages.
[41] EconomonT, PalaciosF, CopelandS, LukaczykT, AlonsoJ. SU2: an open‐source suite for multiphysics simulation and design. AIAA J. 2016;54(3):828‐846.
[42] HernándezS. Métodos de Diseño Óptimo de Estructuras. Madrid, Spain: CICCP; 1990. ISBN 84‐380‐0038‐X.
[43] HojjatM, StavropoulouE, GallingerT, IsraelU, WüchnerR, BK‐U. Fluid Structure Interaction II, chap. Fluid‐Structure Interaction in the Context of Shape Optimization and Computational Wind Engineering, Vol. 73. Berlin, Heidelberg: Springer; 2010;351‐381. · Zbl 1214.74012
[44] AroraJS. Introduction to Design Optimization. 3rd ed.Boston: Academic Press; 2012.
[45] GunzburgerM. Perspectives in Flow Control and Optimization, Society for Industrial and Applied Mathematics; 2002.
[46] HascoetL, PascualV. The tapenade automatic differentiation tool: principles, model, and specification. ACM Trans Math Software. 2013;39(3). Article 20. 43 pages. · Zbl 1295.65026
[47] MartinsJ, HwangJ. Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J. 2013;51(11):2582‐2599.
[48] VeldhuizenT. Expression templates. C++ Rep. 1995;7(5):26‐31.
[49] PflaumC. Expression templates for partial differential equations. Comput Visual Sci. 2001;4(1):1‐8. · Zbl 0996.65117
[50] Di PietroD, VenezianiA. Expression templates implementation of continuous and discontinuous Galerkin methods. Comput Visual Sci. 2009;12(8):421‐436. · Zbl 1214.65059
[51] FarhatC, LesoinneM, MamanN. Mixed explicit/implicit time integration of coupled aeroelastic problems: three‐field formulation, geometric conservation and distributed solution. Int J Numer Methods Fluids. 1995;21(10):807‐835. · Zbl 0865.76038
[52] MauteK, AllenM. Conceptual design of aeroelastic structures by topology optimization. Struct Multi Optim. 2004;27(1‐2):27‐42.
[53] BonetJ, WoodRD. Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge, CB2 8RU, UK: Cambridge University Press; 2008. · Zbl 1142.74002
[54] DeparisS, DiscacciatiM, FouresteyG, QuarteroniA. Fluid‐structure algorithms based on Steklov‐Poincaré operators. Comput Meth Appl Mech Eng. 2006;195(41‐43):5797‐5812. · Zbl 1124.76026
[55] FarhatC, LesoinneM, LeTallecP. Load and motion transfer algorithms for fluid/structure interaction problems with non‐matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Meth Appl Mech Eng. 1998;157(1‐2):95‐114. · Zbl 0951.74015
[56] KassiotisC, IbrahimbegovicA, NiekampR, MatthiesH. Nonlinear fluid‐structure interaction problem. part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech. 2011;47(3):305‐323. · Zbl 1398.74084
[57] Von SchevenM, RammE. Strong coupling schemes for interaction of thin‐walled structures and incompressible flows. Int J Numer Methods Eng. 2011;87(1‐5):214‐231. · Zbl 1242.76150
[58] Le TallecP, MouroJ. Fluid structure interaction with large structural displacements. Comput Meth Appl Mech Eng. 2001;190(24‐25):3039‐3067. · Zbl 1001.74040
[59] MatthiesHG, SteindorfJ. Partitioned but strongly coupled iteration schemes for nonlinear fluid‐structure interaction. Comput Struct. 2002;80(27‐30):199‐1999.
[60] KüttlerU, WallW. Fixed‐point fluid‐structure interaction solvers with dynamic relaxation. Comput Mech. 2008;43(1):61‐72. · Zbl 1236.74284
[61] DegrooteJ, BatheKJ, VierendeelsJ. Performance of a new partitioned procedure versus a monolithic procedure in fluid‐structure interaction. Comput Struct. 2009;87(11‐12):793‐801.
[62] HabchiC, RusseilS, BougeardD, et al. Partitioned solver for strongly coupled fluid‐structure interaction. Comput Fluids. 2013;71:306‐319. · Zbl 1365.76155
[63] van BrummelenEH. Partitioned iterative solution methods for fluid‐structure interaction. Int J Numer Methods Fluids. 2011;65:3‐27. · Zbl 1427.74049
[64] SuchockiC. A finite element implementation of Knowles stored‐energy function: theory, coding and applications. Arch Mech Eng. 2011;58(3):319‐346.
[65] BuosoS, PalaciosR. Electro‐aeromechanical modelling of actuated membrane wings. J Fluids Struct. 2015;58:188‐202.
[66] KoriviVM, TaylorA, NewmanP, HowG, JonesH. An incremental strategy for calculating consistent discrete CFD sensitivity derivatives. Technical Report, National Aeronautics and Space Administration, Langley Research Center; 1992. NASA TM‐104207, NASA Langley, Hampton, VA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.