×

First passage statistics of active random walks on one and two dimensional lattices. (English) Zbl 1539.82095

Summary: We investigate the first passage statistics of active continuous time random walks with Poissonian waiting time distribution on a one dimensional infinite lattice and a two dimensional infinite square lattice. We study the small and large time properties of the probability of the first return to the origin as well as the probability of the first passage to an arbitrary lattice site. It is well known that the occupation probabilities of an active particle resemble that of an ordinary Brownian motion with an effective diffusion constant at large times. Interestingly, we demonstrate that even at the leading order, the first passage probabilities are not given by a simple effective diffusion constant. We demonstrate that at late times, activity enhances the probability of the first return to the origin and the probabilities of the first passage to lattice sites close enough to the origin, which we quantify in terms of the Péclet number. Additionally, we derive the first passage probabilities of a symmetric random walker and a biased random walker without activity as limiting cases. We verify our analytic results by performing kinetic Monte Carlo simulations of an active random walker in one and two dimensions.

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
60G40 Stopping times; optimal stopping problems; gambling theory
60K50 Anomalous diffusion models (subdiffusion, superdiffusion, continuous-time random walks, etc.)

References:

[1] Czirók, A.; Vicsek, T., Collective behavior of interacting self-propelled particles, Physica A, 281, 17-29 (2000) · doi:10.1016/s0378-4371(00)00013-3
[2] Toner, J.; Tu, Y.; Ramaswamy, S., Hydrodynamics and phases of flocks, Ann. Phys., NY, 318, 170-244 (2005) · Zbl 1126.82347 · doi:10.1016/j.aop.2005.04.011
[3] Bricard, A.; Caussin, J-B; Desreumaux, N.; Dauchot, O.; Bartolo, D., Emergence of macroscopic directed motion in populations of motile colloids, Nature, 503, 95-98 (2013) · doi:10.1038/nature12673
[4] Cates, M. E., Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics?, Rep. Prog. Phys., 75 (2012) · doi:10.1088/0034-4885/75/4/042601
[5] Cates, M. E.; Tailleur, J., Motility-induced phase separation, Annu. Rev. Condens. Matter Phys., 6, 219-244 (2015) · doi:10.1146/annurev-conmatphys-031214-014710
[6] Wysocki, A.; Winkler, R. G.; Gompper, G., Cooperative motion of active Brownian spheres in three-dimensional dense suspensions, Europhys. Lett., 105 (2014) · doi:10.1209/0295-5075/105/48004
[7] Stenhammar, J.; Marenduzzo, D.; Allen, R. J.; Cates, M. E., Phase behaviour of active Brownian particles: the role of dimensionality, Soft Matter, 10, 1489-1499 (2014) · doi:10.1039/c3sm52813h
[8] Speck, T.; Bialké, J.; Menzel, A. M.; Löwen, H., Effective Cahn-Hilliard equation for the phase separation of active Brownian particles, Phys. Rev. Lett., 112 (2014) · doi:10.1103/physrevlett.112.218304
[9] Yang, X.; Manning, M. L.; Marchetti, M. C., Aggregation and segregation of confined active particles, Soft Matter, 10, 6477-6484 (2014) · doi:10.1039/c4sm00927d
[10] Fily, Y.; Henkes, S.; Marchetti, M. C., Freezing and phase separation of self-propelled disks, Soft Matter, 10, 2132-2140 (2014) · doi:10.1039/c3sm52469h
[11] Enculescu, M.; Stark, H., Active colloidal suspensions exhibit polar order under gravity, Phys. Rev. Lett., 107 (2011) · doi:10.1103/physrevlett.107.058301
[12] Lee, C. F., Active particles under confinement: aggregation at the wall and gradient formation inside a channel, New J. Phys., 15 (2013) · doi:10.1088/1367-2630/15/5/055007
[13] Berg, H. C., E. coli in Motion (2004), Berlin: Springer, Berlin
[14] Powers, T. R., Role of body rotation in bacterial flagellar bundling, Phys. Rev. E, 65 (2002) · doi:10.1103/physreve.65.040903
[15] Locsei, J. T., Persistence of direction increases the drift velocity of run and tumble chemotaxis, J. Math. Biol., 55, 41-60 (2007) · Zbl 1141.92008 · doi:10.1007/s00285-007-0080-z
[16] Tailleur, J.; Cates, M. E., Statistical mechanics of interacting run-and-tumble bacteria, Phys. Rev. Lett., 100 (2008) · doi:10.1103/physrevlett.100.218103
[17] Paoluzzi, M.; Di Leonardo, R.; Angelani, L., Effective run-and-tumble dynamics of bacteria baths, J. Phys.: Condens. Matter, 25 (2013) · doi:10.1088/0953-8984/25/41/415102
[18] Di Leonardo, R., Bacterial ratchet motors, Proc. Natl Acad. Sci. USA, 107, 9541-9545 (2010) · doi:10.1073/pnas.0910426107
[19] Saragosti, J.; Calvez, V.; Bournaveas, N.; Perthame, B.; Buguin, A.; Silberzan, P., Directional persistence of chemotactic bacteria in a traveling concentration wave, Proc. Natl Acad. Sci. USA, 108, 16235-16240 (2011) · doi:10.1073/pnas.1101996108
[20] Malakar, K.; Jemseena, V.; Kundu, A.; Vijay Kumar, K.; Sabhapandit, S.; Majumdar, S. N.; Redner, S.; Dhar, A., Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension, J. Stat. Mech. (2018) · Zbl 1459.82182 · doi:10.1088/1742-5468/aab84f
[21] Evans, M. R.; Majumdar, S. N., Run and tumble particle under resetting: a renewal approach, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1411.82028 · doi:10.1088/1751-8121/aae74e
[22] Mori, F.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Universal survival probability for a d-dimensional run-and-tumble particle, Phys. Rev. Lett., 124 (2020) · doi:10.1103/physrevlett.124.090603
[23] Mori, F.; Le Doussal, P.; Majumdar, S. N.; Schehr, G., Universal properties of a run-and-tumble particle in arbitrary dimension, Phys. Rev. E, 102 (2020) · doi:10.1103/physreve.102.042133
[24] Singh, P.; Kundu, A., Generalised ‘arcsine’ laws for run-and-tumble particle in one dimension, J. Stat. Mech. (2019) · Zbl 1457.82347 · doi:10.1088/1742-5468/ab3283
[25] Angelani, L.; Di Leonardo, R.; Paoluzzi, M., First-passage time of run-and-tumble particles, Eur. Phys. J. E, 37, 59 (2014) · doi:10.1140/epje/i2014-14059-4
[26] Martens, K.; Angelani, L.; Di Leonardo, R.; Bocquet, L., Probability distributions for the run-and-tumble bacterial dynamics: an analogy to the Lorentz model, Eur. Phys. J. E, 35, 84 (2012) · doi:10.1140/epje/i2012-12084-y
[27] Slowman, A. B.; Evans, M. R.; Blythe, R. A., Exact solution of two interacting run-and-tumble random walkers with finite tumble duration, J. Phys. A: Math. Theor., 50 (2017) · Zbl 1378.92044 · doi:10.1088/1751-8121/aa80af
[28] Stenhammar, J.; Tiribocchi, A.; Allen, R. J.; Marenduzzo, D.; Cates, M. E., Continuum theory of phase separation kinetics for active Brownian particles, Phys. Rev. Lett., 111 (2013) · doi:10.1103/physrevlett.111.145702
[29] Basu, U.; Majumdar, S. N.; Rosso, A.; Schehr, G., Active Brownian motion in two dimensions, Phys. Rev. E, 98 (2018) · doi:10.1103/physreve.98.062121
[30] Lindner, B.; Nicola, E. M., Diffusion in different models of active Brownian motion, Eur. Phys. J. Spec. Top., 157, 43-52 (2008) · doi:10.1140/epjst/e2008-00629-7
[31] Kumar, V.; Sadekar, O.; Basu, U., Active Brownian motion in two dimensions under stochastic resetting, Phys. Rev. E, 102 (2020) · doi:10.1103/physreve.102.052129
[32] Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L., Active Brownian particles-from individual to collective stochastic dynamics p, Eur. Phys. J. Spec. Top., 202, 1-162 (2012) · doi:10.1140/epjst/e2012-01529-y
[33] Romanczuk, P.; Erdmann, U., Collective motion of active Brownian particles in one dimension, Eur. Phys. J. Spec. Top., 187, 127-134 (2010) · doi:10.1140/epjst/e2010-01277-0
[34] DeCamp, S. J.; Redner, G. S.; Baskaran, A.; Hagan, M. F.; Dogic, Z., Orientational order of motile defects in active nematics, Nat. Mater., 14, 1110-1115 (2015) · doi:10.1038/nmat4387
[35] Redner, G. S.; Baskaran, A.; Hagan, M. F., Reentrant phase behavior in active colloids with attraction, Phys. Rev. E, 88 (2013) · doi:10.1103/physreve.88.012305
[36] Mallory, S. A.; Šarić, A.; Valeriani, C.; Cacciuto, A., Anomalous thermomechanical properties of a self-propelled colloidal fluid, Phys. Rev. E, 89 (2014) · doi:10.1103/physreve.89.052303
[37] Walsh, L.; Wagner, C. G.; Schlossberg, S.; Olson, C.; Baskaran, A.; Menon, N., Noise and diffusion of a vibrated self-propelled granular particle, Soft Matter, 13, 8964-8968 (2017) · doi:10.1039/c7sm01206c
[38] Schnitzer, M. J., Theory of continuum random walks and application to chemotaxis, Phys. Rev. E, 48, 2553 (1993) · doi:10.1103/physreve.48.2553
[39] Gautrais, J.; Jost, C.; Soria, M.; Campo, A.; Motsch, S.; Fournier, R.; Blanco, S.; Theraulaz, T., Analyzing fish movement as a persistent turning walker, J. Math. Biol., 58, 429-445 (2009) · Zbl 1153.92038 · doi:10.1007/s00285-008-0198-7
[40] Cavagna, A.; Cimarelli, A.; Giardina, I.; Parisi, G.; Santagati, R.; Stefanini, F.; Viale, M., Scale-free correlations in starling flocks, Proc. Natl Acad. Sci. USA, 107, 11865-11870 (2010) · doi:10.1073/pnas.1005766107
[41] Ramaswamy, S., The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., 1, 323-345 (2010) · doi:10.1146/annurev-conmatphys-070909-104101
[42] Chou, T.; D’Orsogna, M., First passage problems in biology, First-Passage Phenomena and their Applications, 306-345 (2014), Singapore: World Scientific, Singapore
[43] Kenwright, D. A.; Harrison, A. W.; Waigh, T. A.; Woodman, P. G.; Allan, V. J., First-passage-probability analysis of active transport in live cells, Phys. Rev. E, 86 (2012) · doi:10.1103/physreve.86.031910
[44] Condamin, S.; Tejedor, V.; Voituriez, R.; Bénichou, O.; Klafter, J., Probing microscopic origins of confined subdiffusion by first-passage observables, Proc. Natl Acad. Sci. USA, 105, 5675-5680 (2008) · doi:10.1073/pnas.0712158105
[45] Szabo, A.; Schulten, K.; Schulten, Z., First passage time approach to diffusion controlled reactions, J. Chem. Phys., 72, 4350-4357 (1980) · doi:10.1063/1.439715
[46] Park, S.; Sener, M. K.; Lu, D.; Schulten, K., Reaction paths based on mean first-passage times, J. Chem. Phys., 119, 1313-1319 (2003) · doi:10.1063/1.1570396
[47] Liu, H.; Liao, C-Y; Ko, J-Y; Lih, J-S, Anchoring effect on first passage process in Taiwan financial market, Physica A, 477, 114-127 (2017) · doi:10.1016/j.physa.2017.02.043
[48] Zhang, D.; Melnik, R. V N., First passage time for multivariate jump-diffusion processes in finance and other areas of applications, Appl. Stoch. Models Bus. Ind., 25, 565-582 (2009) · Zbl 1224.91176 · doi:10.1002/asmb.745
[49] Chicheportiche, R.; Bouchaud, J-P, Some applications of first-passage ideas to finance, First-Passage Phenomena and Their Applications, 447-476 (2014), Singapore: World Scientific, Singapore
[50] Siegert, A. J F., On the first passage time probability problem, Phys. Rev., 81, 617 (1951) · Zbl 0045.28504 · doi:10.1103/physrev.81.617
[51] Pólya, G., Über eine aufgabe der wahrscheinlichkeitsrechnung betreffend die irrfahrt im straßennetz, Math. Ann., 84, 149-160 (1921) · JFM 48.0603.01 · doi:10.1007/bf01458701
[52] Montroll, E. W.; Weiss, G. H., Random walks on lattices: II, J. Math. Phys., 6, 167-181 (1965) · Zbl 1342.60067 · doi:10.1063/1.1704269
[53] Montroll, E. W., Random walks on lattices: III. Calculation of first‐passage times with application to exciton trapping on photosynthetic units, J. Math. Phys., 10, 753-765 (1969) · Zbl 1368.60049 · doi:10.1063/1.1664902
[54] Domb, C., On multiple returns in the random-walk problem, Mathematical Proceedings of the Cambridge Philosophical Society, vol 50, 586-591 (1954), Cambridge: Cambridge University Press, Cambridge · Zbl 0056.12602
[55] Lindenberg, K.; Seshadri, V.; Shuler, K. E.; Weiss, G. H., Lattice random walks for sets of random walkers first passage times, J. Stat. Phys., 23, 11-25 (1980) · doi:10.1007/bf01014427
[56] Burkhardt, T. W., First passage of a randomly accelerated particle, First-Passage Phenomena and Their Applications, 21-44 (2014), Singapore: World Scientific, Singapore
[57] Bénichou, O.; Voituriez, R., First-passage times of intermittent random walks, First-Passage Phenomena And Their Applications, 70-95 (2014), Singapore: World Scientific, Singapore · Zbl 1358.60003
[58] Khantha, M.; Balakrishnan, V., First passage time distributions for finite one-dimensional random walks, Pramana J. Phys., 21, 111-122 (1983) · doi:10.1007/bf02894735
[59] Balakrishnan, V.; Khantha, M., First passage time and escape time distributions for continuous time random walks, Pramana J. Phys., 21, 187-200 (1983) · doi:10.1007/bf02849620
[60] Redner, S., A Guide to First-Passage Processes (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0980.60006
[61] Majumdar, S. N., Persistence in nonequilibrium systems, Curr. Sci., 77, 370-375 (1999)
[62] Bray, A. J.; Majumdar, S. N.; Schehr, G., Persistence and first-passage properties in nonequilibrium systems, Adv. Phys., 62, 225-361 (2013) · doi:10.1080/00018732.2013.803819
[63] Montroll, E. W.; Scher, H., Random walks on lattices: IV. Continuous-time walks and influence of absorbing boundaries, J. Stat. Phys., 9, 101-135 (1973) · doi:10.1007/bf01016843
[64] Montroll, E. W.; West, B. J., On an enriched collection of stochastic processes, Fluctuation Phenom., 66, 61 (1979) · doi:10.1016/b978-0-444-85248-9.50005-4
[65] Shlesinger, M. F., Asymptotic solutions of continuous-time random walks, J. Stat. Phys., 10, 421-434 (1974) · doi:10.1007/bf01008803
[66] Klafter, J.; Silbey, R., Derivation of the continuous-time random-walk equation, Phys. Rev. Lett., 44, 55 (1980) · doi:10.1103/physrevlett.44.55
[67] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/s0370-1573(00)00070-3
[68] Bouchaud, J-P; Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195, 127-293 (1990) · doi:10.1016/0370-1573(90)90099-n
[69] Bel, G.; Barkai, E., Occupation times and ergodicity breaking in biased continuous time random walks, J. Phys.: Condens. Matter, 17, S4287 (2005) · doi:10.1088/0953-8984/17/49/021
[70] Kutner, R.; Masoliver, J., The continuous time random walk, still trendy: fifty-year history, state of art and outlook, Eur. Phys. J. B, 90, 50 (2017) · doi:10.1140/epjb/e2016-70578-3
[71] Mainardi, F., On the advent of fractional calculus in econophysics via continuous-time random walk, Mathematics, 8, 641 (2020) · doi:10.3390/math8040641
[72] Jose, S.; Mandal, D.; Barma, M.; Ramola, K., Active random walks in one and two dimensions, Phys. Rev. E, 105 (2022) · doi:10.1103/physreve.105.064103
[73] Haus, J. W.; Kehr, K. W., Diffusion in regular and disordered lattices, Phys. Rep., 150, 263-406 (1987) · doi:10.1016/0370-1573(87)90005-6
[74] Foong, S. K.; Kanno, S., Properties of the telegrapher’s random process with or without a trap, Stoch. Process. Appl., 53, 147-173 (1994) · Zbl 0807.60070 · doi:10.1016/0304-4149(94)90061-2
[75] Howse, J. R.; Jones, R. A L.; Ryan, A. J.; Gough, T.; Vafabakhsh, R.; Golestanian, R., Self-motile colloidal particles: from directed propulsion to random walk, Phys. Rev. Lett., 99 (2007) · doi:10.1103/physrevlett.99.048102
[76] Solon, A. P.; Cates, M. E.; Tailleur, J., Active Brownian particles and run-and-tumble particles: a comparative study, Eur. Phys. J. Spec. Top., 224, 1231-1262 (2015) · doi:10.1140/epjst/e2015-02457-0
[77] Aragones, J. L.; Yazdi, S.; Alexander-Katz, A., Diffusion of self-propelled particles in complex media, Phys. Rev. Fluids, 3 (2018) · doi:10.1103/physrevfluids.3.083301
[78] Lacroix-A-Chez-Toine, B.; Mori, F., Universal survival probability for a correlated random walk and applications to records, J. Phys. A: Math. Theor., 53 (2020) · Zbl 1519.60045 · doi:10.1088/1751-8121/abc129
[79] Ray, S.; Mondal, D.; Reuveni, S., Péclet number governs transition to acceleratory restart in drift-diffusion, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.82046 · doi:10.1088/1751-8121/ab1fcc
[80] Kourbane-Houssene, M.; Erignoux, C.; Bodineau, T.; Tailleur, J., Exact hydrodynamic description of active lattice gases, Phys. Rev. Lett., 120 (2018) · doi:10.1103/physrevlett.120.268003
[81] Jose, S., First passage statistics of continuous time random walks in one and two dimensions (2021)
[82] Feller, W., An Introduction to Probability Theory and Its Applications, vol 2 (2008), New York: Wiley, New York · Zbl 0158.34902
[83] Balakrishnan, V., Some results on first passage times in one dimensional random walks, Seminario Mat. Fis. Milano, 53, 273-284 (1983) · Zbl 0597.60061 · doi:10.1007/bf02924903
[84] Bell, W. W., Special Functions for Scientists and Engineers (1968), London: D. Van Nostrand Co., London · Zbl 0167.34401
[85] Hughes, B. D., Random Walks and Random Environments, vol 1 (1995), Oxford: Oxford University Press, Oxford · Zbl 0820.60053
[86] Le Doussal, P.; Majumdar, S. N.; Schehr, G., Noncrossing run-and-tumble particles on a line, Phys. Rev. E, 100 (2019) · doi:10.1103/physreve.100.012113
[87] Katsura, S.; Inawashiro, S., Lattice Green’s functions for the rectangular and the square lattices at arbitrary points, J. Math. Phys., 12, 1622-1630 (1971) · Zbl 0224.33025 · doi:10.1063/1.1665785
[88] Maassarani, Z., Series expansions for lattice green functions, J. Phys. A: Math. Gen., 33, 5675 (2000) · Zbl 0980.82007 · doi:10.1088/0305-4470/33/32/306
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.