×

Ghost systems: A vertex algebra point of view. (English) Zbl 0945.81011

Summary: Fermionic and bosonic ghost systems are defined each in terms of a single vertex algebra which admits a one-parameter family of conformal structures. The observation that these structures are related to each other provides a simple way to obtain character formulae for a general twisted module of a ghost system. The \(U(1)\) symmetry and its subgroups that underlie the twisted modules also define an infinite set of invariant vertex subalgebras. Their structure is studied in detail from a \(W\)-algebra point of view with particular emphasis on \(\mathbb{Z}_\mathbb{N}\)-invariant subalgebras of the fermionic ghost system.

MSC:

81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T20 Quantum field theory on curved space or space-time backgrounds
17B69 Vertex operators; vertex operator algebras and related structures

References:

[1] Friedan, D.; Martinec, E.; Shenker, S., Conformal invariance, supersymmetry and string theory, Nucl. Phys. B, 271, 93 (1986)
[2] S. Guruswamy and A.W.W. Ludwig, Relating \(cc\); S. Guruswamy and A.W.W. Ludwig, Relating \(cc\) · Zbl 0945.81058
[3] L.S. Georgiev and I.T. Todorov, Characters and partition function for the Wen-Wu CFT model of the Haldane-Rezayi quantum Hall state, preprint hep-th/9611084, INRNE-TH-96/13.; L.S. Georgiev and I.T. Todorov, Characters and partition function for the Wen-Wu CFT model of the Haldane-Rezayi quantum Hall state, preprint hep-th/9611084, INRNE-TH-96/13.
[4] Gurarie, V.; Flohr, M.; Nayak, C., The Haldane-Rezayi quantum Hall state and conformal field theory, Nucl. Phys. B, 498, 513 (1997), cond-mat/9701212 · Zbl 0934.81073
[5] Moore, G.; Read, N., Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B, 360, 362 (1991)
[6] Saleur, H., Polymers and percolation in two dimensions and twisted \(N = 2\) supersymmetry, Nucl. Phys. B, 382, 486 (1992)
[7] Bernard, D., (Perturbed) conformal field theory applied to 2D disordered systems: An introduction, (Baulieu, L.; Kazakov, V.; Picco, M.; Windley, P., Low-Dimensional Applications of Quantum Field Theory (1997), Plenum Press: Plenum Press New York), 19, hep-th/9509137 · Zbl 0915.58114
[8] Maassarani, Z.; Serban, D., Non-unitary conformal field theory and logarithmic operators for disordered systems, Nucl. Phys. B, 489, 603 (1997), hep-th/9605062 · Zbl 0925.81328
[9] di Francesco, P.; Mathieu, P.; Sénéchal, D., Conformal Field Theory, Graduate Texts in Contemporary Physics (1997), Springer: Springer New York · Zbl 0869.53052
[10] de Boer, J.; Fehér, L., Wakimoto realizations of current algebras: An explicit construction, Commun. Math. Phys., 189, 759 (1997), hep-th/9611083 · Zbl 0932.81014
[11] Rasmussen, J., Free field realizations of affine current superalgebras, screening currents and primary fields, Nucl. Phys. B, 510, 688 (1998), hep-th/9706091 · Zbl 0953.81028
[12] H.G. Kausch, Curiosities at \(c\); H.G. Kausch, Curiosities at \(c\)
[13] Ginsparg, P., Curiosities at \(c = 1\), Nucl. Phys. B, 295, 153 (1988)
[14] Kiritsis, E. B., Proof of the completeness of the classification of rational conformal theories with \(c = 1\), Phys. Lett. B, 217, 427 (1989)
[15] Borcherds, R. E., Vertex algebras, Kac-Moody algebras, and the monster, (Proc. Natl. Acad. Sci. USA, 83 (1986)), 3068 · Zbl 0613.17012
[16] Kac, V.; Radul, A., Representation theory of the vertex algebra \(W\), Transform. Groups, 1, 41 (1996), hep-th/9512150 · Zbl 0862.17023
[17] Blumenhagen, R.; Eholzer, W.; Honecker, A.; Hornfeck, K.; Hübel, R., Coset realization of unifying \(W\) algebras, Int. J. Mod. Phys. A, 10, 2367 (1995), hep-th/9406203 · Zbl 1044.81594
[18] Fehér, L.; O’Raifeartaigh, L.; Ruelle, P.; Tsutsui, I.; Wipf, A., On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. Rep., 222, 1 (1992) · Zbl 0748.35032
[19] Frenkel, E.; Kac, V.; Wakimoto, M., Characters and fusion rules for \(W\) algebras via quantized Drinfeld-Sokolov reduction, Commun. Math. Phys., 147, 295 (1992) · Zbl 0768.17008
[20] de Boer, J.; Tjin, T., The relation between quantum \(W\) algebras and Lie algebras, Commun. Math. Phys., 160, 317 (1994), hep-th/9302006 · Zbl 0796.17027
[21] Schellekens, A. N., Meromorphic \(c = 24\) conformal field theories, Commun. Math. Phys., 153, 159 (1993), hep-th/9205072 · Zbl 0782.17014
[22] Cappelli, A.; Trugenberger, C. A.; Zemba, G. R., Classification of quantum Hall universality classes by \(W\) symmetry, Phys. Rev. Lett., 72, 1902 (1994), hep-th/9310181
[23] Flohr, M.; Varnhagen, R., Infinite symmetry in the fractional quantum Hall effect, J. Phys. A: Math. Gen., 27, 3999 (1994), hep-th/9309083
[24] Kac, V.; Radul, A., Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Commun. Math. Phys., 157, 429 (1993), hep-th/9308153 · Zbl 0826.17027
[25] Frenkel, E.; Kac, V.; Radul, A.; Wang, W., \(W\) and \(W\) with central charge \(N\), Commun. Math. Phys., 170, 337 (1995), hep-th/9405121 · Zbl 0838.17028
[26] Awata, H.; Fukuma, M.; Matsuo, Y.; Odake, S., Character and determinant formulae of quasifinite representation of the \(W\) algebra, Commun. Math. Phys., 172, 377 (1995), hep-th/9405093 · Zbl 0853.17023
[27] Kac, V. G.; Todorov, I. T., Affine orbifolds and rational conformal field theory extensions of \(W\), Commun. Math. Phys., 190 (1997), hep-th/9612078 · Zbl 0904.17021
[28] Kac, V., Vertex Algebras for Beginners, (University Lecture Series, Vol. 10 (1997), American Mathematical Society: American Mathematical Society Providence, R.I) · Zbl 0861.17017
[29] Kac, V. G.; Raina, A. K., Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, (Advanced Series in Mathematical Physics, Vol. 2 (1987), World Scientific: World Scientific Singapore) · Zbl 0668.17012
[30] Schwimmer, A.; Seiberg, N., Comments on the \(N = 2, 3, 4\) superconformal algebras in two dimensions, Phys. Lett. B, 184, 191 (1987)
[31] Feigin, B.; Frenkel, E., Bosonic ghost system and the Virasoro algebra, Phys. Lett. B, 246, 71 (1990) · Zbl 1243.81086
[32] Honecker, A., Automorphisms of \(W\)-algebras and extended rational conformal field theories, Nucl. Phys. B, 400, 574 (1993), hep-th/9211130 · Zbl 0941.81545
[33] Weyl, H., The Classical Groups, Their Invariants and Representations (1946), Princeton University Press: Princeton University Press Princeton · Zbl 1024.20502
[34] de Boer, J.; Fehér, L.; Honecker, A., A class of \(W\)-algebras with infinitely generated classical limit, Nucl. Phys. B, 420, 409 (1994), hep-th/9312049 · Zbl 0990.81525
[35] Ginsparg, P., Applied conformal field theory, (Brézin, E.; Zinn-Justin, J., Fields, Strings and Critical Phenomena. Fields, Strings and Critical Phenomena, Proceedings of the Les Houches Summer School 1988 (1990), North-Holland: North-Holland Amsterdam), 1 · Zbl 0985.82500
[36] Zamolodchikov, A. B., Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys., 65, 1205 (1986)
[37] Bouwknegt, P.; Ceresole, A.; van Nieuwenhuizen, P.; McCarthy, J., Extended Sugawara construction for the superalgebra \(SU (M + 1 |N + 1)\). II. The third-order Casimir algebra, Phys. Rev. D, 40, 415 (1989)
[38] Kausch, H. G., Extended conformal algebras generated by a multiplet of primary fields, Phys. Lett. B, 259, 448 (1991)
[39] Eholzer, W.; Honecker, A.; Hübel, R., How complete is the classification of \(W\)-symmetries?, Phys. Lett. B, 308, 42 (1993), hep-th/9302124 · Zbl 1015.81511
[40] Blumenhagen, R.; Eholzer, W.; Honecker, A.; Hornfeck, K.; Hübel, R., Unifying \(W\)-algebras, Phys. Lett. B, 332, 51 (1994), hep-th/9404113 · Zbl 1044.81594
[41] W. Wang, \(WW\); W. Wang, \(WW\)
[42] Hornfeck, K., \(W\)-Algebras with set of primary fields of dimensions (3,4,5) and (3,4,5,6), Nucl. Phys. B, 407, 237 (1993), hep-th/9212104 · Zbl 1043.81566
[43] Kausch, H. G.; Watts, G. M.T., A study of \(W\)-algebras using Jacobi identities, Nucl. Phys. B, 354, 740 (1991)
[44] Gurarie, V., Logarithmic operators in conformal field theory, Nucl. Phys. B, 410, 535 (1993), hep-th/9303160 · Zbl 0990.81686
[45] Flohr, M. A.I., On fusion rules in logarithmic conformal field theories, Int. J. Mod. Phys. A, 12, 1943 (1997), hep-th/9605151 · Zbl 0985.81738
[46] Gaberdiel, M. R.; Kausch, H. G., A rational logarithmic conformal field theory, Phys. Lett. B, 386, 131 (1996), hep-th/9606050
[47] Goddard, P., Meromorphic conformal field theory, (Kac, V. G., Infinite dimensional Lie algebras and groups. Infinite dimensional Lie algebras and groups, Proc. CIRM-Luminy Conference 1988 (1989), World Scientific: World Scientific Singapore), 556 · Zbl 0742.17027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.