×

Three-dimensional fracture analysis of FGM coatings under thermomechanical loading. (English) Zbl 1196.74232

Summary: The main objective of this study is to examine the three dimensional surface crack problems in functionally graded coatings subjected to mode I mechanical or transient thermal loading. The surface cracks are assumed to have a semi-elliptical crack front profile of arbitrary aspect ratio. The cracks are embedded in the functionally graded material (FGM) coating which is perfectly bonded to a homogeneous substrate. A three dimensional finite element method is used to solve the thermal and structural problems. Collapsed 20-node isoparametric elements are utilized to simulate the strain singularity around the crack front. The stress intensity factors are computed by using the displacement correlation technique. Four different coating types are considered in the analyses which have homogeneous, ceramic-rich (CR), metal-rich (MR) and linear variation (LN) material composition profiles. In the mechanical loading problems, the composite medium is assumed to be subjected to fixed-grip tension or three point bending. In the thermal analysis, a transient residual stress problem is considered. The stress intensity factors calculated for FGM plates are in good agreement with the previously published results on three dimensional surface cracks. The new results provided show that maximum stress intensity factors computed during transient thermal loading period for the FGM coatings are lower than those of the homogeneous ceramic ones.

MSC:

74R10 Brittle fracture
74E05 Inhomogeneity in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

ANSYS
Full Text: DOI

References:

[1] ANSYS Basic Analysis Procedures Guide Release 5.4, (1997). Ansys Inc, Canonsburg, PA, USA.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.