×

Cnoidal waves on Fermi-Pasta-Ulam lattices. (English) Zbl 1382.37080

Summary: We study a chain of infinitely many particles coupled by nonlinear springs, obeying the equations of motion \[ \ddot{q}_n=V'(q_{n+1}-q_n)-V'(q_n-q_{n-1}) \] with generic nearest-neighbour potential \(V\). We show that this chain carries exact spatially periodic travelling waves whose profile is asymptotic, in a small-amlitude long-wave regime, to the KdV cnoidal waves. The discrete waves have three interesting features: (1) being exact travelling waves they keep their shape for infinite time, rather than just up to a timescale of order wavelength\(^{-3}\) suggested by formal asymptotic analysis, (2) unlike solitary waves they carry a nonzero amount of energy per particle, (3) analogous behaviour of their KdV continuum counterparts suggests long-time stability properties under nonlinear interaction with each other. Connections with the Fermi-Pasta-Ulam recurrence phenomena are indicated. Proofs involve an adaptation of the renormalization approach of G. Friesecke and R. L. Pego[ Nonlinearity 12, No. 6, 1601–1627 (1999; Zbl 0962.82015)] to a periodic setting and the spectral theory of the periodic Schrödinger operator with KdV cnoidal wave potential.

MSC:

37K60 Lattice dynamics; integrable lattice equations
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35C08 Soliton solutions
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
70H12 Periodic and almost periodic solutions for problems in Hamiltonian and Lagrangian mechanics
82B28 Renormalization group methods in equilibrium statistical mechanics

Citations:

Zbl 0962.82015

References:

[1] Akhiezer, N.I., Tomchuk, Y.Y.: On the theory of orthogonal polynomials over several intervals. Sov. Math. Doklady 2, 687-690 (1961) · Zbl 0109.29601
[2] Arscott, F.M.: Periodic Differential Equations. Pergamon Press, Oxford (1964) · Zbl 0121.29903
[3] Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994) · Zbl 0809.35001
[4] Biello, J.A., Kramer, P.R., Lvov, Y.: Stages of energy transfer in the fpu model. In Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations (2002) · Zbl 1174.82313
[5] Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, Berlin (1954) · Zbl 0213.16602 · doi:10.1007/978-3-642-52803-3
[6] Drazin, P.G., Johnson, R.S.: Solitons: An Introduction, volume 2 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1990)
[7] Dreyer, W., Herrmann, M.: Numerical experiments on the modulation theory for the nonlinear atomic chain. Physica D 237(2), 255-282 (2008) · Zbl 1142.82027 · doi:10.1016/j.physd.2007.09.003
[8] Dubrovin, B.A.: Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct. Anal. Appl. 9(1), 61-62 (1975) · Zbl 0315.35072 · doi:10.1007/BF01078183
[9] Dubrovin, B.A.: Periodic problems for the Korteweg-de Vries equation in the class of finite band potentials. Funct. Anal. Appl. 9(3), 215-223 (1975) · Zbl 0358.35022 · doi:10.1007/BF01075598
[10] Fermi, E., Pasta, J., Ulam, S.M.: Studies in nonlinear problems. Technical Report LA-1940, Los Alamos Scientific Laboratory, Los Alamos (1955) · Zbl 0353.70028
[11] Filip, A.M., Venakides, S.: Existence and modulation of traveling waves in particle chains. Commun. Pure. Appl. Math. 52(6), 693-735 (1999) · Zbl 0928.34010 · doi:10.1002/(SICI)1097-0312(199906)52:6<693::AID-CPA2>3.0.CO;2-9
[12] Friesecke, G., Pego, R.L.: Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit. Nonlinearity 12, 1601-1627 (1999) · Zbl 0962.82015 · doi:10.1088/0951-7715/12/6/311
[13] Friesecke, G., Pego, R.L.: Solitary waves on FPU lattices: II. Linear implies nonlinear stability. Nonlinearity 15, 1343-1359 (2002) · Zbl 1102.37311 · doi:10.1088/0951-7715/15/4/317
[14] Friesecke, G., Pego, R.L.: Solitary waves on Fermi-Pasta-Ulam lattices: III. Howland-type Floquet theory. Nonlinearity 17, 207-227 (2004) · Zbl 1103.37049 · doi:10.1088/0951-7715/17/1/013
[15] Friesecke, G., Pego, R.L.: Solitary waves on Fermi-Pasta-Ulam lattices: IV. Proof of stability at low energy. Nonlinearity 17, 229-251 (2004) · Zbl 1103.37050 · doi:10.1088/0951-7715/17/1/014
[16] Friesecke, G., Wattis, J.A.D.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161(2), 391-418 (1994) · Zbl 0807.35121 · doi:10.1007/BF02099784
[17] Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Korteweg-de Vries equation and generalizations. VI. Methods for exact solution. Commun. Pure Appl. Math. 27(1), 97-133 (1974) · Zbl 0291.35012 · doi:10.1002/cpa.3160270108
[18] Gesztesy, F., Holden, H.: Soliton Equations and their Algebro-Geometric Solutions; Volume I: (1+1)-Dimensional Continuous Models, volume 79 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2003) · Zbl 1061.37056 · doi:10.1017/CBO9780511546723
[19] Gesztesy, F., Holden, H., Michor, J., Teschl, G.: Soliton Equations and their Algebro-Geometric Solutions; Volume II: (1+1)-Dimensional Discrete Models, volume 114 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2008) · Zbl 1151.37056 · doi:10.1017/CBO9780511543203
[20] Grunert, K., Teschl, G.: Long-time asymptotics for the Korteweg-de Vries equation via nonlinear steepest descent. Math. Phys. Anal. Geom. 12, 287-324 (2009) · Zbl 1179.37098 · doi:10.1007/s11040-009-9062-2
[21] Herrmann, M.: Unimodal wavetrains and solitons in convex Fermi-Pasta-Ulam chains. Proc. R. Soc. Edinb. 140(4), 753-785 (2010) · Zbl 1205.37083 · doi:10.1017/S0308210509000146
[22] Herrmann, M., Matthies, K., Schwetlick, H., Zimmer, J.: Subsonic phase transition waves in bistable lattice models with small spinodal region. preprint arxiv:1206.0268 (2012) · Zbl 1287.37054
[23] Hoffman, A., Wayne, C.E.: Counter-propagating two-soliton solutions in the Fermi-Pasta-Ulam lattice. Nonlinearity 21, 2911-2948 (2008) · Zbl 1153.82323 · doi:10.1088/0951-7715/21/12/011
[24] Ince, E.L.: The periodic Lamé functions. Proc. R. Soc. Edinb. 60, 47-63 (1940) · JFM 66.1242.03 · doi:10.1017/S0370164600020058
[25] Iooss, G.: Travelling waves in the Fermi-Pasta-Ulam lattice. Nonlinearity 13, 849-866 (2000) · Zbl 0960.37038 · doi:10.1088/0951-7715/13/3/319
[26] Iooss, G., Kirchgässner, K.: Travelling waves in a chain of coupled nonlinear oscillators. Commun. Math. Phys. 211(2), 439-464 (2000) · Zbl 0956.37055 · doi:10.1007/s002200050821
[27] Its, A.R., Matveev, V.B.: Hill’s operator with finitely many gaps. Funct. Anal. Appl. 9(1), 65-66 (1975) · Zbl 0318.34038 · doi:10.1007/BF01078185
[28] Its, A.R., Matveev, V.B.: Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation. Theor. Math. Phys. 23(1), 343-355 (1975) · doi:10.1007/BF01038218
[29] Izrailev, F.M., Chirikov, B.V.: Statistical properties of a nonlinear string. Sov. Phys. Doklady 11(1), 30-32 (1966) · Zbl 0149.23207
[30] Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin (2003) · Zbl 1032.37001 · doi:10.1007/978-3-662-08054-2
[31] Korteweg, D.J., De Vries, G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 5th Ser. 39(240), 422-443 (1895) · JFM 26.0881.02 · doi:10.1080/14786449508620739
[32] Lax, P.D.: Almost periodic solutions of the KdV equation. SIAM Rev. 18, 351-375 (1976) · Zbl 0329.35015 · doi:10.1137/1018074
[33] Levitan, B.M.: Almost periodicity of infinite-zone potentials. Math. USSR-Izvestiya 18, 249-273 (1982) · Zbl 0483.35075 · doi:10.1070/IM1982v018n02ABEH001388
[34] Levitan, B.M.: Approximation of infinite-zone potentials by finite-zone potentials. Math. USSR-Izvestiya 20, 55-87 (1983) · Zbl 0517.34037 · doi:10.1070/IM1983v020n01ABEH001339
[35] Magnus, W., Winkler, S.: Hill’s Equation. Interscience, New York (1966) · Zbl 0158.09604
[36] McKean, H.P., Moerbeke, P.: The spectrum of Hill’s equation. Invent. Math. 30(3), 217-274 (1975) · Zbl 0319.34024 · doi:10.1007/BF01425567
[37] McKean, H.P., Trubowitz, E.: Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Commun. Pure Appl. Math. 29(2), 143-226 (1976) · Zbl 0339.34024 · doi:10.1002/cpa.3160290203
[38] Mizumachi, T.: Asymptotic stability of N-solitons of the FPU lattices. preprint arxiv:0906.1320 (2009) · Zbl 1190.82023
[39] Mizumachi, T.: \[NN\]-soliton states of the Fermi-Pasta-Ulam Lattices. SIAM J. Math. Anal. 43, 2170-2210 (2011) · Zbl 1259.37044 · doi:10.1137/100792457
[40] Pankov, A.A., Pflüger, K.: Travelling waves in lattice dynamical systems. Math. Methods Appl. Sci. 23(14), 1223-1235 (2000) · Zbl 0963.37072 · doi:10.1002/1099-1476(20000925)23:14<1223::AID-MMA162>3.0.CO;2-Y
[41] Pava, J.A., Bona, J.L., Scialom, M.: Stability of cnoidal waves. Adv. Diff. Equ. 11(12), 1321-1374 (2006) · Zbl 1147.35079
[42] Rink, B.W.: Proof of Nishida’s conjecture on anharmonic lattices. Commun. Math. Phys. 261(3), 613-627 (2006) · Zbl 1113.82045 · doi:10.1007/s00220-005-1451-1
[43] Schwetlick, H., Zimmer, J.: Solitary waves for nonconvex FPU lattices. J. Nonlinear Sci. 17(1), 1-12 (2007) · Zbl 1114.37044 · doi:10.1007/s00332-005-0735-0
[44] Smets, D., Willem, M.: Solitary waves with prescribed speed on infinite lattices. J. Funct. Anal. 149(1), 266-275 (1997) · Zbl 0889.34059 · doi:10.1006/jfan.1996.3121
[45] Teschl, G.: Jacobi Operators and Complete Integrable Nonlinear Lattices, Volume 72 of Mathematical Surveys and Monographs. American Mathematical Society, Rhode Island (2000) · Zbl 1056.39029
[46] Toda, M.: Theory of Nonlinear Lattices. Springer, Berlin (1981) · Zbl 0465.70014 · doi:10.1007/978-3-642-96585-2
[47] Valkering, T.P.: Periodic permanent waves in an anharmonic chain with nearest-neighbour interaction. J Phy. A 11, 1885-1897 (1978) · Zbl 0401.49037 · doi:10.1088/0305-4470/11/10/008
[48] Wayne, C.E.: The KAM theory of systems with short range interactions. I. Commun. Math. Phys. 96(3), 311-329 (1984) · Zbl 0585.58023 · doi:10.1007/BF01214577
[49] Wayne, CE; Schneider, G.; etal.; Fiedler, B. (ed.), Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, 390-404 (2000), Singapore · Zbl 0970.35126
[50] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1962) · Zbl 0105.26901
[51] Zabusky, N.J., Kruskal, M.D.: Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240-243 (1965) · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240
[52] Zeidler, E.: Nonlinear Functional Analysis and its Applications: Fixed-Point Theorems, vol. 1. Springer, Berlin (1986) · Zbl 0583.47050 · doi:10.1007/978-1-4612-4838-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.