×

Incipient fault detection and isolation with Cauchy-Schwarz divergence: a probabilistic approach. (English) Zbl 07919274

Summary: To monitor the dynamics and non-stationarity inherent in industrial processes, we propose a novel incipient fault detection and isolation scheme grounded in a probabilistic perspective, using the Cauchy-Schwarz (CS) divergence. Our innovation lies in the utilization of marginal CS divergence for incipient fault detection and the conditional CS divergence for fault isolation. This approach neither require prior parametric assumptions about the underlying data distribution nor depend on historical fault data, while simultaneously providing explanatory diagnostics. Beyond this, we develop a change point detection-base diagnosis technique for practical engineering applications. This online process monitoring technique guarantees timely intervention to uphold process stability and safety. We demonstrate the compelling performance, higher detection rate and lower alarm rate, of the CS divergence over prevalent divergence-based approaches, such as Kullback-Leibler divergence, Wasserstein distance and Mahalanobis distance. We also illustrate the explanatory insights offered by conditional CS divergence in fault isolation on synthetic data, benchmarks of continuous stirred-tank reactor process and continuous stirred-tank heater process and even a real-world continuous catalytic reforming process. Code of this CS divergence based fault detection and isolation is available at https://github.com/Feiya-Lv/Incipient-Fault-Detection-and-Isolation-with-Cauchy-Schwarz-Divergence.

MSC:

94C12 Fault detection; testing in circuits and networks
93E10 Estimation and detection in stochastic control theory
Full Text: DOI

References:

[1] Yin, S.; Ding, S. X.; Xie, X., A review on basic data-driven approaches for industrial process monitoring, IEEE Trans. Ind. Electron., 61, 11, 6418-6428, 2014
[2] Chiang, L. H.; Russell, E. L.; Braatz, R. D., Fault detection and diagnosis in industrial systems, 2000, Springer Science & Business Media
[3] Isermann, R., Model-based fault-detection and diagnosis-status and applications, Annu. Rev. Control, 29, 1, 71-85, 2005
[4] Shang, J.; Chen, M.; Ji, H.; Zhou, D., Recursive transformed component statistical analysis for incipient fault detection, Automatica, 80, 313-327, 2017 · Zbl 1370.93246
[5] Harinarayan, R. R.A.; Shalinie, S. M., XFDDC: eXplainable fault detection diagnosis and correction framework for chemical process systems, Process. Saf. Environ. Prot., 165, 463-474, 2022
[6] Zeng, J.; Kruger, U.; Geluk, J.; Wang, X.; Xie, L., Detecting abnormal situations using the Kullback-Leibler divergence, Automatica, 50, 11, 2777-2786, 2014 · Zbl 1300.93029
[7] Safaeipour, H.; Forouzanfar, M.; Casavola, A., A survey and classification of incipient fault diagnosis approaches, J. Process Control, 97, 1-16, 2021
[8] Li, Y.; Cao, W.; Hu, W.; Xiong, Y.; Wu, M., Incipient fault detection for geological drilling processes using multivariate generalized Gaussian distributions and Kullback-Leibler divergence, Control Eng. Pract., 117, Article 104937 pp., 2021
[9] Zhang, X.; Delpha, C.; Diallo, D., Performance of Jensen Shannon divergence in incipient fault detection and estimation, IEEE Int. Conf. Acoust. Speech and Signal Process. (ICASSP)., 2742-2746, 2019
[10] Zhang, X.; Delpha, C.; Diallo, D., Incipient fault detection and estimation based on Jensen-Shannon divergence in a data-driven approach, Signal Process., 169, Article 107410 pp., 2020
[11] Lu, C.; Zeng, J.; Luo, S.; Cai, J., Detection and isolation of incipiently developing fault using Wasserstein distance, Processes, 10, 6, 1081, 2022
[12] Li, Y.; Song, Y.; Jia, L.; Gao, S.; Li, Q.; Qiu, M., Intelligent fault diagnosis by fusing domain adversarial training and maximum mean discrepancy via ensemble learning, IEEE Trans. Ind. Inform., 17, 4, 2833-2841, 2021
[13] Ji, H., Statistics mahalanobis distance for incipient sensor fault detection and diagnosis, Chem. Eng. Sci., 230, Article 116233 pp., 2021
[14] Sadeghzadeh-Nokhodberiz, N.; Meskin, N., Protocol-based particle filtering and divergence estimation, IEEE Syst. J., 15, 3, 4537-4544, 2021
[15] Principe, J. C.; Xu, D.; Fisher, J.; Haykin, S., Information theoretic learning, Unsupervised Adapt. Filter., 1, 265-319, 2000
[16] Yu, S.; Li, H.; Løkse, S.; Jenssen, R.; Príncipe, J. C., The conditional Cauchy-Schwarz divergence with applications to time-series data and sequential decision making, 179-192, 2023, ArXiv preprint
[17] Jenssen, R., Kernel entropy component analysis, IEEE Trans. Pattern Anal. Mach. Intell., 32, 5, 847-860, 2010
[18] Qi, Y.; Wang, Y.; Lu, C.; Wang, L., Improved batch process monitoring and diagnosis based on multiphase KECA, IFAC-Papers OnLine, 51, 18, 827-832, 2018
[19] Hu, C.; Luo, J.; Kong, X.; Feng, X., Novel fault subspace extraction methods for the reconstruction-based fault diagnosis, J. Process Control, 105, 129-140, 2021
[20] Feng, L.; Zhao, C., Fault description based attribute transfer for zero-sample industrial fault diagnosis, IEEE Trans. Ind. Inform., 17, 3, 1852-1862, 2021
[21] Abid, A.; Khan, M. T.; Iqbal, J., A review on fault detection and diagnosis techniques: basics and beyond, Artif. Intell. Rev., 54, 3639-3664, 2021
[22] Duan, S.; Zhu, K.; Song, P.; Zhao, C., Dynamic causal modeling for nonstationary industrial process performance degradation analysis and fault prognosis, J. Process Control, 129, Article 103050 pp., 2023
[23] Westerhuis, J. A.; Gurden, S. P.; Smilde, A. K., Generalized contribution plots in multivariate statistical process monitoring, Chemometr. Intell. Lab. Syst., 51, 1, 95-114, 2000
[24] Elshenawy, L. M.; Mahmoud, T. A.; Chakour, C., Simultaneous fault detection and diagnosis using adaptive principal component analysis and multivariate contribution analysis, Ind. Eng. Chem. Res., 59, 20798-20815, 2020
[25] Xiao, B.; Li, Y.; Sun, B.; Yang, C.; Huang, K.; Zhu, H., Decentralized PCA modeling based on relevance and redundancy variable selection and its application to large-scale dynamic process monitoring, Process. Saf. Environ. Prot., 151, 85-100, 2021
[26] Alcala, C. F.; Qin, S. J., Reconstruction-based contribution for process monitoring, Automatica, 45, 7, 1593-1600, 2009 · Zbl 1188.90074
[27] Liu, Q.; Song, B.; Ding, X.; Qin, S. J., Fault diagnosis of dynamic processes with reconstruction and magnitude profile estimation for an industrial application, Control Eng. Pract., 121, Article 105008 pp., 2022
[28] Zhao, C.; Gao, F., A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information, Control Eng. Pract., 65, 70-82, 2017
[29] Yang, J.; Delpha, C., An incipient fault diagnosis methodology using local Mahalanobis distance: Fault isolation and fault severity estimation, Signal Process., 200, Article 108657 pp., 2022
[30] Basu, A.; Shioya, H.; Park, C., Statistical inference: the minimum distance approach, 2011, CRC Press · Zbl 1281.62016
[31] Kulinski, S.; Bagchi, S.; Inouye, D. I., Feature shift detection: Localizing which features have shifted via conditional distribution tests, Adv. Neural Inf. Process. Syst., 33, 19523-19533, 2020
[32] Principe, J. C.; Xu, D.; Zhao, Q.; Fisher, J. W., Learning from examples with information theoretic criteria, J. VLSI Signal Process. Syst. Signal, Image and Video Technol., 26, 1, 61-77, 2000 · Zbl 0965.68135
[33] Robert, J.; C, P. J.; Deniz, E.; Torbjørn, E., The Cauchy-Schwarz divergence and parzen windowing: Connections to graph theory and mercer kernels, J. Franklin Inst., 343, 6, 614-629, 2006 · Zbl 1105.93001
[34] Kampa, K.; Hasanbelliu, E.; Principe, J. C., Closed-form Cauchy-Schwarz PDF divergence for mixture of Gaussians, Int. Jt. Conf. Neural Netw., 2578-2585, 2011
[35] De Ryck, T.; De Vos, M.; Bertrand, A., Change point detection in time series data using autoencoders with a time-invariant representation, IEEE Trans. Signal Process., 69, 3513-3524, 2021 · Zbl 07591573
[36] Lv, F.; Yu, S.; Wen, C.; Principe, J. C., Interpretable fault detection using projections of mutual information matrix, J. Franklin Inst., 358, 7, 4028-4057, 2021 · Zbl 1464.93009
[37] Yin, S.; Gao, H.; Kaynak, O., Data-driven control and process monitoring for industrial applications, Part I, IEEE Trans. Ind. Electron., 61, 11, 6356-6359, 2014
[38] Ding, S. X., Model-Based Fault Diagnosis Techniques—Design Schemes, Algorithms and Tools, 2013, Springer Verlag · Zbl 1293.93003
[39] Chen, Z. W.; Zhang, K.; Shardt, Y. A.; Ding, S. X., Comparison of two basic statistics for fault detection and process monitoring, IFAC-Papers on Line, 50, 1, 14776-14781, 2017
[40] Zhou, D.; Y., Y., Modern Fault Diagnosis and Fault Tolerant Control, 2000, Beijing: Beijing Tsing Hua University Publishing House
[41] Pilario, K. E.S.; Cao, Y., Canonical variate dissimilarity analysis for process incipient fault detection, IEEE Trans. Ind. Inform., 14, 12, 5308-5315, 2018
[42] Pilario, K. E.S.; Cao, Y.; Shafiee, M., Mixed kernel canonical variate dissimilarity analysis for incipient fault monitoring in nonlinear dynamic processes, Comput. Chem. Eng., 123, 143-154, 2019
[43] Jiang, Q.; X., D. S.; Wang, Y.; Yan, X., Data-driven distributed local fault detection for large-scale processes based on the GA-regularized canonical correlation analysis, IEEE Trans. Ind. Electron., 64, 10, 8148-8157, 2017
[44] Bi, X.; Zhao, J., A novel orthogonal self-attentive variational autoencoder method for interpretable chemical process fault detection and identification, Process. Saf. Environ. Prot., 156, 581-597, 2021
[45] Wu, D.; Bi, X.; Zhao, J., ProTopormer: Toward understandable fault diagnosis combining process topology for chemical processes, Ind. Eng. Chem. Res., 62, 21, 8350-8361, 2023
[46] Li, D.; Li, L.; Li, X.; Ke, Z.; Hu, Q., Smoothed LSTM-AE: A spatio-temporal deep model for multiple time-series missing imputation, Neurocomputing, 411, 351-363, 2020
[47] Thornhill, N.; Patwardhan, S.; Shah, S., A continuous stirred tank heater simulation model with applications, J. Process Control, 18, 347-360, 2008
[48] Cheng, F.; He, Q. P.; Zhao, J., A novel process monitoring approach based on variational recurrent autoencoder, Comput. Chem. Eng., 129, Article 106515 pp., 2019
[49] Bi, X.; Wu, D.; Xie, D.; Ye, H.; Zhao, J., Large-scale chemical process causal discovery from big data with transformer-based deep learning, Process. Saf. Environ. Prot., 173, 163-177, 2023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.