×

Dynamics of axially symmetric perturbed Hamiltonians in 1:1:1 resonance. (English) Zbl 1398.37048

The authors consider a family of perturbed Hamiltonian systems with three degrees of freedom that are in 1:1:1 resonance. The specific Hamiltonian that they actually consider has the form \[ H_\varepsilon(p,q)= H_0(p,q)+\varepsilon H_1(q)+ \varepsilon^2H_2(q), \] where \(q= (x,y,z)\), \(p=(X,Y,Z)\) and \(H_0\) is the Hamiltonian of the isotropic harmonic oscillator: \[ H_0(p,q)= {1\over 2}(x^2+ X^2)+{1\over 2}(y^2+ Y^2)+ {1\over 2}(z^2+ Z^2). \] \(H_1\) and \(H_2\) are chosen to be polynomials (cubic and quartic, respectively) that are axially symmetric with respect to the \(z\)-axis. They have the form \[ \begin{aligned} H_1(x,y,z) &= a_1z(x^2+y^2)+ a_2z^3,\\ H_2(x,y,z) &= b_1(x^2+ y^2)^2+ b_2z^2(x^2+y^2)+ b_3z^4.\end{aligned} \] The authors proceed as follows. They note that the original Hamiltonian system can be reduced using one exact symmetry (the axial one) and one approximate one (the oscillator symmetry). The oscillator symmetry can be extended up to a certain order with respect to a small parameter, and this – after truncation – allows a second reduction. The original system can also be reduced using both symmetries.
The paper proceeds by carrying out each of the three reductions. The authors analyze the three reduced systems in their corresponding reduced spaces, and then reconstruct the flow corresponding to the original Hamiltonian in all three situations. Relative equilibrium are found. The authors also include a study of stability and all the relevant parametric bifurcations.

MSC:

37J15 Symmetries, invariants, invariant manifolds, momentum maps, reduction (MSC2010)
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37J20 Bifurcation problems for finite-dimensional Hamiltonian and Lagrangian systems
53D20 Momentum maps; symplectic reduction
70H08 Nearly integrable Hamiltonian systems, KAM theory
70H09 Perturbation theories for problems in Hamiltonian and Lagrangian mechanics

References:

[1] Arms, JM; Cushman, RH; Gotay, MJ; Ratiu, T (ed.), A universal reduction procedure for Hamiltonian group actions, 33-51, (1991), New York · Zbl 0742.58016 · doi:10.1007/978-1-4613-9725-0_4
[2] Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, Third Edition, Encyclopaedia of Mathematical Sciences, vol. 3. Dynamical Systems III. Springer, New York (2006) · Zbl 1105.70002
[3] Breiter, S; Elipe, A; Wytrzyszczak, I, Analytical investigation of the orbital structure close to the 1:1:1 resonance in spheroidal galaxies, Astron. Astrophys., 431, 1145-1155, (2005) · doi:10.1051/0004-6361:20041579
[4] Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi-Periodic Motions in Families of Dynamical Systems. Order Amidst Chaos, Lecture Notes in Math, vol. 1645. Springer, New York (1996) · Zbl 0870.58087
[5] Broer, HW; Hanßmann, H; Hoo, J, The quasi-periodic Hamiltonian Hopf bifurcation, Nonlinearity, 20, 417-460, (2007) · Zbl 1121.37042 · doi:10.1088/0951-7715/20/2/009
[6] Caranicolas, ND, 1:1:1 resonant periodic orbits in 3-dimensional galactic-type Hamiltonians, Astron. Astrophys., 114, 360-366, (1982) · Zbl 0519.70015
[7] Caranicolas, ND; Zotos, EE, Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits, Nonlinear Dyn., 69, 1795-1805, (2012) · doi:10.1007/s11071-012-0386-2
[8] Cariñena, J.F., Ibort, A., Marmo, G., Morandi, G.: Geometry from Dynamics. Classical and Quantum. Springer, Dordrecht (2015) · Zbl 1364.81001
[9] Churchill, RC; Kummer, M; Rod, DL, On averaging, reduction, and symmetry in Hamiltonian systems, J. Differ. Equ., 49, 359-414, (1983) · Zbl 0476.70017 · doi:10.1016/0022-0396(83)90003-7
[10] Contopoulos, G; Barbanis, B, Resonant systems with three degrees of freedom, Astron. Astrophys., 153, 44-54, (1985) · Zbl 0661.70029
[11] Cornea, O., Lupton, G., Oprea, J., Tanré, D.: Lusternik-Schnirelmann Category, Mathematical Surveys and Monographs, vol. 103. American Mathematical Society, Rhode Island (2003) · Zbl 1032.55001 · doi:10.1090/surv/103
[12] Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007) · Zbl 1118.13001
[13] Cushman, R.H., Bates, L.M.: Global Aspects of Classical Integrable Systems, 2nd edn. Birkhäuser Verlag, Basel (2015) · Zbl 1321.70001 · doi:10.1007/978-3-0348-0918-4
[14] Cushman, RH; Ferrer, S; Hanßmann, H, Singular reduction of axially symmetric perturbations of the isotropic harmonic oscillator, Nonlinearity, 12, 389-410, (1999) · Zbl 0952.70017 · doi:10.1088/0951-7715/12/2/014
[15] David, D; Holm, DD; Tratnik, MV, Hamiltonian chaos in nonlinear optical polarization dynamics, Phys. Rep., 187, 281-367, (1990) · Zbl 1211.37097 · doi:10.1016/0370-1573(90)90063-8
[16] Bustos, MT; Guirao, JL; Llibre, J; Vera, J, New families of periodic orbits for a galactic potential, Chaos Solitons Fractals., 82, 97-102, (2016) · Zbl 1355.34061 · doi:10.1016/j.chaos.2015.11.003
[17] Zeeuw, T, Motion in the core of a triaxial potential, Mon. Not. R. Astron. Soc., 215, 731-760, (1985) · Zbl 0587.70010 · doi:10.1093/mnras/215.4.731
[18] de Zeeuw, T.: Dynamical models for axisymmetric and triaxial galaxies. In: de Zeeuw, T. (ed.) Structure and Dynamics of Elliptical Galaxies, vol. 127, pp. 271-290. Reidel, Dordrecht (1987). IAU Symp · Zbl 1358.37100
[19] Zeeuw, T; Franx, M, Structure and dynamics of elliptical galaxies, Annu. Rev. Astron. Astrophys., 29, 239-274, (1991) · doi:10.1146/annurev.aa.29.090191.001323
[20] Zeeuw, T; Merritt, D, Stellar orbits in a triaxial galaxy. I. orbits in the plane of rotation, Astrophys. J., 267, 571-595, (1983) · doi:10.1086/160894
[21] Deprit, A, Canonical transformations depending on a small parameter, Celest. Mech., 1, 12-30, (1969) · Zbl 0172.26002 · doi:10.1007/BF01230629
[22] Deprit, A, The Lissajous transformation I, Basics. Celest. Mech., 51, 201-225, (1991) · Zbl 0756.70014 · doi:10.1007/BF00051691
[23] Deprit, A; Miller, BR, Normalization in the face of integrability, Ann. N. Y. Acad. Sci., 536, 101-126, (1988) · Zbl 0727.70014 · doi:10.1111/j.1749-6632.1988.tb51568.x
[24] Efstathiou, K.: Metamorphoses of Hamiltonian Systems with Symmetries. Lecture Notes in Math, vol. 1865. Springer, New York (2005) · Zbl 1069.70002
[25] Efstathiou, K; Sadovskií, DA, Perturbations of the 1:1:1 resonance with tetrahedral symmetry: a three degree of freedom analogue of the two degree of freedom Hénon-Heiles Hamiltonian, Nonlinearity, 17, 415-446, (2004) · Zbl 1064.37044 · doi:10.1088/0951-7715/17/2/003
[26] Efstathiou, K; Sadovskií, DA; Cushman, RH, Linear Hamiltonian Hopf bifurcation for point-group-invariant perturbations of the 1:1:1 resonance, Proc. R. Soc. Lond. A, 459, 2997-3019, (2003) · Zbl 1042.37038 · doi:10.1098/rspa.2003.1158
[27] Efstathiou, K; Sadovskií, DA; Zhilinskií, BI, Analysis of rotation-vibration relative equilibria on the example of a tetrahedral four atom molecule, SIAM J. Appl. Dyn. Syst., 3, 261-351, (2004) · Zbl 1057.81061 · doi:10.1137/030600015
[28] Egea, J; Ferrer, S; Meer, J-C, Hamiltonian fourfold 1:1 resonance with two rotational symmetries, Regul. Chaot. Dyn., 12, 664-674, (2007) · Zbl 1229.37053 · doi:10.1134/S1560354707060081
[29] Egea, J; Ferrer, S; Meer, J-C, Bifurcations of the Hamiltonian fourfold 1:1 resonance with toroidal symmetry, J. Nonlinear Sci., 21, 835-874, (2011) · Zbl 1251.37055 · doi:10.1007/s00332-011-9102-5
[30] Elipe, A, Extended Lissajous variables for oscillators in resonance, Math. Comput. Simul., 57, 217-226, (2001) · Zbl 1076.70507 · doi:10.1016/S0378-4754(01)00340-8
[31] Farrelly, D; Uzer, T, Normalization and the detection of integrability: the generalized van der Waals potential, Celest. Mech. Dynam. Astron., 61, 71-95, (1995) · Zbl 0819.70013 · doi:10.1007/BF00051689
[32] Farrelly, D; Humpherys, J; Uzer, T; Seimenis, J (ed.), Normalization of resonant Hamiltonians, 237-244, (1994), New York · doi:10.1007/978-1-4899-0964-0_22
[33] Ferrer, S; Gárate, J; Lacomba, EA (ed.); Llibre, J (ed.), On perturbed 3D elliptic oscillators: a case of critical inclination in galactic dynamics, No. 8, 179-197, (1996), Singapore · Zbl 1138.70331
[34] Ferrer, S., Lara, M., Palacián, J.F., San Juan, J.F., Viartola, A., Yanguas, P.: The Hénon and Heiles problem in three dimensions. I. Periodic orbits near the origin. Int. J. Bifur. Chaos Appl. Sci. Eng. 8(6), 1199-1213 (1998) · Zbl 0933.37060
[35] Ferrer, S., Lara, M., Palacián, J.F., San Juan, J.F., Viartola, A., Yanguas, P.: The Hénon and Heiles problem in three dimensions. II. Relative equilibria and bifurcations in the reduced system. Int. J. Bifur. Chaos Appl. Sci. Eng. 8(6), 1215-1229 (1998) · Zbl 0989.37045
[36] Ferrer, S; Palacián, JF; Yanguas, P, Hamiltonian oscillators in \(1\)-\(1\)-\(1\) resonance: normalization and integrability, J. Nonlinear Sci., 10, 145-174, (2000) · Zbl 0974.34034 · doi:10.1007/s003329910007
[37] Ferrer, S; Hanßmann, H; Palacián, JF; Yanguas, P, On perturbed oscillators in \(1\)-\(1\)-\(1\) resonance: the case of axially symmetric cubic potentials, J. Geom. Phys., 40, 320-369, (2002) · Zbl 1037.34031 · doi:10.1016/S0393-0440(01)00041-9
[38] Guirao, JLG; Llibre, J; Vera, JA, Periodic orbits of a perturbed 3-dimensional isotropic oscillator with axial symmetry, Nonlinear Dyn., 83, 839-848, (2016) · Zbl 1349.37057 · doi:10.1007/s11071-015-2371-z
[39] Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics, Interdisciplinary Applied Mathematics, vol. 1. Springer, New York (1990) · Zbl 0727.70029 · doi:10.1007/978-1-4612-0983-6
[40] Haller, G.: Chaos Near Resonance, Applied Mathematical Sciences, vol. 138. Springer, New York (1999) · Zbl 1024.37002 · doi:10.1007/978-1-4612-1508-0
[41] Haller, G; Wiggins, S, Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems, Phys. D, 90, 319-365, (1996) · Zbl 0894.70014 · doi:10.1016/0167-2789(95)00247-2
[42] Han, Y; Li, Y; Yi, Y, Invariant tori in Hamiltonian systems with high order proper degeneracy, Ann. Henri Poincaré, 10, 1419-1436, (2010) · Zbl 1238.37018 · doi:10.1007/s00023-010-0026-7
[43] Hanßmann, H.: Local and Semi-Local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples. Lecture Notes in Math, vol. 1893. Springer, New York (2007) · Zbl 1120.37036
[44] Hanßmann, H; Meer, J-C, On the Hamiltonian Hopf bifurcations in the 3D Hénon-Heiles family, J. Dyn. Differ. Equ., 14, 675-695, (2002) · Zbl 1035.37038 · doi:10.1023/A:1016343317119
[45] Hanßmann, H; Meer, J-C, Algebraic methods for determining Hamiltonian Hopf bifurcations in three-degree-of-freedom systems, J. Dyn. Differ. Equ., 17, 453-474, (2005) · Zbl 1078.37041 · doi:10.1007/s10884-005-4575-2
[46] Kummer, M, On resonant classical Hamiltonians with \(n\) frequencies, J. Differ. Equ., 83, 220-243, (1990) · Zbl 0711.34059 · doi:10.1016/0022-0396(90)90057-V
[47] Lanchares, V; Palacián, JF; Pascual, AI; Salas, JP; Yanguas, P, Perturbed ion traps: a generalization of the three-dimensional Hénon-Heiles problem, Chaos, 12, 87-99, (2002) · Zbl 1080.37609 · doi:10.1063/1.1449957
[48] Laub, AJ; Meyer, KR, Canonical forms for symplectic and Hamiltonian matrices, Celes. Mech., 9, 213-238, (1974) · Zbl 0316.15005 · doi:10.1007/BF01260514
[49] Lembarki, FE; Llibre, J, Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension 6, Nonlinear Dyn., 76, 1807-1819, (2014) · Zbl 1314.70032 · doi:10.1007/s11071-014-1249-9
[50] Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, Second Edition, Applied Mathematical Sciences, vol. 38. Springer, New York (1992) · Zbl 0748.70001 · doi:10.1007/978-1-4757-2184-3
[51] Llibre, J; Vidal, C, New periodic solutions in \(3\)-dimensional galactic-type Hamiltonian systems, Nonlinear Dyn., 78, 969-980, (2014) · Zbl 1331.70037 · doi:10.1007/s11071-014-1490-2
[52] Llibre, J; Pasca, D; Valls, C, Periodic solutions of a galactic potential, Chaos Solitons Fractals, 61, 38-43, (2014) · Zbl 1348.37096 · doi:10.1016/j.chaos.2014.02.005
[53] Markeev, A.P.: Libration Points in Celestial Mechanics and Space Dynamics. Nauka, Moscow (1978) · Zbl 1454.70002
[54] Marsden, J; Weinstein, A, Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5, 121-130, (1974) · Zbl 0327.58005 · doi:10.1016/0034-4877(74)90021-4
[55] Meyer, K.R., Palacián, J.F., Yanguas, P.: Invariant tori in the Lunar problem. Publ. Mat. EXTRA, 353-394 (2014). https://doi.org/10.5565/PUBLMAT_Extra14_19 · Zbl 1365.70010
[56] Meyer, K.R., Palacián, J.F., Yanguas, P.: Singular reduction of high dimensional Hamiltonian systems (in preparation) · Zbl 0756.70014
[57] Meyer, K.R., Palacián, J.F., Yanguas, P.: Singular reduction of resonant Hamiltonians, to be published in Nonlinearity (2018) · Zbl 0172.26002
[58] Meyer, KR; Peixoto, MM (ed.), Symmetries and integrals in mechanics, 259-272, (1973), New York · Zbl 0293.58009 · doi:10.1016/B978-0-12-550350-1.50025-4
[59] Meyer, KR; Schmidt, DS, Periodic orbits near \(L_4\) for mass ratios near the critical mass ratio of Routh, Celest. Mech., 4, 99-109, (1971) · Zbl 0226.70009 · doi:10.1007/BF01230325
[60] Meyer, K.R., Hall, G.R., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, 2nd edn. Springer, New York (2009) · Zbl 1179.70002
[61] Meyer, KR; Palacián, JF; Yanguas, P, Geometric averaging of Hamiltonian systems: periodic solutions, stability, and KAM tori, SIAM J. Appl. Dyn. Syst., 10, 817-856, (2011) · Zbl 1277.37090 · doi:10.1137/100807673
[62] Moser, J, Regularization of kepler’s problem and the averaging method on a manifold, Commun. Pure Appl. Math. XXII, I, 609-636, (1970) · Zbl 0193.53803 · doi:10.1002/cpa.3160230406
[63] Palacián, JF; Vidal, C; Vidarte, J; Yanguas, P, Periodic solutions and KAM tori in a triaxial potential, SIAM. J. Appl. Dyn. Syst., 16, 159-187, (2017) · Zbl 1358.37100 · doi:10.1137/16M1082925
[64] Reeb, G.: Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques, Acad. R. Sci. Lett. et Beaux-Arts de Belgique. Cl. des Sci. Mém. in \(8^{∘ }\), Ser. 2, 27, 9 (1952) · Zbl 0048.32903
[65] Sanders, JA; Calmet, J (ed.); Seiler, WM (ed.); Tucker, RW (ed.), Normal forms of \(3\) degree of freedom Hamiltonian systems at equilibrium in the resonant case, 335-346, (2006), Karlsruhe · Zbl 1181.37070
[66] Schomerus, H, Periodic orbits near bifurcations of codimension two: classical mechanics, semiclassics and Stokes transitions, J. Phys. A Math. Gen., 31, 4167-4196, (1998) · Zbl 0962.37031 · doi:10.1088/0305-4470/31/18/008
[67] Sturmfels, B.: Algorithms in Invariant Theory. Texts and Monographs in Symbolic Computation. Springer, New York (1993) · Zbl 0802.13002 · doi:10.1007/978-3-7091-4368-1
[68] Aa, E, First-order resonances in three-degrees-of-freedom systems, Celest. Mech., 31, 163-191, (1983) · Zbl 0547.70018 · doi:10.1007/BF01686817
[69] van der Meer, J.-C.: The Hamiltonian Hopf Bifurcation. Lecture Notes in Math, vol. 1160. Springer, New York (1985) · Zbl 0585.58019
[70] Vidarte, J.: Averaging, Reduction and Reconstruction in Hamiltonian Systems and Applications to Problems of Celestial Mechanics. Ph.D. Thesis, Universidad del Bío-Bío (2017)
[71] Weinstein, A, Normal modes for nonlinear Hamiltonian systems, Inventiones math., 20, 47-57, (1973) · Zbl 0264.70020 · doi:10.1007/BF01405263
[72] Weinstein, A.: Symplectic V-manifolds, periodic orbits of Hamiltonian systems, and the volume of certain Riemannian manifolds. Commun. Pure Appl. Math. XXX(2), 265-271 (1977) · Zbl 0339.58007
[73] Weinstein, A, Bifurcations and hamilton’s principle, Math. Z., 159, 235-248, (1978) · Zbl 0366.58003 · doi:10.1007/BF01214573
[74] Welker, T.: The Bifurcation Diagram of the Second Nontrivial Normal Form of an Axially Symmetric Perturbation of the Isotropic Harmonic Oscillator. Bachelor Thesis, University of Utrecht (2014)
[75] Yanguas, P.: Integrability, Normalization and Symmetries of Hamiltonian Systems in \(1\)-\(1\)-\(1\) resonance. Ph.D. Thesis, Universidad Pública de Navarra (1998)
[76] Yanguas, P; Palacián, JF; Meyer, KR; Dumas, HS, Periodic solutions in Hamiltonian systems, averaging, and the lunar problem, SIAM J. Appl. Dyn. Syst., 7, 311-340, (2011) · Zbl 1159.37424 · doi:10.1137/070696453
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.