×

On the convolution bodies of \(L_p\)-addition. (English) Zbl 1498.52014

The Brunn-Minkowski theory and its analogs play enteral roles in convex geometry. D. Alonso-Gutiérrez et al. [Adv. Math. 238, 50–69 (2013; Zbl 1281.52005)] revealed the connection between the convolution set and the Minkowski sum, that is, the convolution set \(A+_{1,\theta} B\) of sets \(A,B \subset \mathbb{R}^n\) has the following representation: \[ A+_{1,\theta} B=\{x \in A+_1 B:|A \cap(x-B)| \geq \theta M(A, B)\}, \] for \(\theta \in [0,1]\), whenever \(M(A, B):=\sup _{x \in A+_1 B}|A \cap(x-B)|\) is finite. Here \(A+_1 B\) is the Minkowski sum of \(A\) and \(B\). Now we can see that the Minkowski sum \(A+_1 B=A+_{1,0} B\). They further established the following Brunn-Minkowski inequality for convolution bodies: \begin{align*} \left|K+_{1,\theta} L\right|^{\frac{1}{n}} \geq\left(1-\theta^{\frac{1}{n}}\right)\left(|K|^{\frac{1}{n}}+|L|^{\frac{1}{n}}\right), \end{align*} where \(K,L \subset \mathbb{R}^n\) are arbitrary convex bodies.
In the paper under review, the author extends the above results to the \(L_p\) Brunn-Minkowski theory. First, the author recalls the definition of the \(L_p\) Minkowski sum of \(A,B \subset \mathbb{R}^n\) introduced by E. Lutwak et al. [Adv. Appl. Math. 48, No. 2, 407–413 (2012; Zbl 1252.52006)]: \[ A+_p B=\left\{(1-t)^{1 / p^{\prime}} x+t^{1 / p^{\prime}} y: x \in A, y \in B,\,0 \leq t \leq 1\right\}, \] where \(1 / p+1 / p^{\prime}=1\). When \(A,B\) are convex bodies containing the origin, it is equivalent to W. J. Firey’s classical definition [Math. Scand. 10, 17–24 (1962; Zbl 0188.27303)]. Then the \(L_p\) convolution set is defined as the following: \[ A+_{p, \theta} B=\left\{x \in A+_p B:\left|(1-t)^{1 / p^{\prime}} A \cap\left(x-t^{1 / p^{\prime}} B\right)\right| \geq \theta^p M_p^t(A, B), \,0 \leq t \leq 1\right\} \] for \(\theta \in[0,1]\), whenever \[ M_p^t(A, B):=\sup \left\{\left|(1-t)^{1 / p^{\prime}} A \cap\left(x-t^{1 / p^{\prime}} B\right)\right|: x \in(1-t)^{1 / p^{\prime}} A+t^{1 / p^{\prime}} B\right\}. \] Finally, the author establishes the following \(L_p\) Brunn-Minkowski inequality for \(L_p\) convolution bodies: \begin{align*} \left|K+_{p,\theta} L\right|^{\frac{p}{n}} \geq\left(1-\theta^{\frac{p}{n}}\right)\left(|K|^{\frac{p}{n}}+|L|^{\frac{p}{n}}\right). \end{align*} where \(K,L \subset \mathbb{R}^n\) are convex bodies containing the origin in their interiors, under the assumption that \(M_p^t(K, L)=\left|(1-t)^{1 / p^{\prime}} K \cap\left(-t^{1 / p^{\prime}} L\right)\right|\). Remark that the additional assumption holds if \(K=-L\) or \(K,L\) are origin-symmetric.
Reviewer: Jin Li (Shanghai )

MSC:

52A40 Inequalities and extremum problems involving convexity in convex geometry
Full Text: DOI

References:

[1] Alonso-Gutiérrez, D.; González, B.; Jiménez, CH, Volume inequalities for the \(i\)-th-convolution bodies, J. Math. Anal. Appl., 424, 385-401 (2015) · Zbl 1305.52016 · doi:10.1016/j.jmaa.2014.11.033
[2] Alonso-Gutiérrez, D.; Jiménez, CH; Villa, R., Brunn-Minkowski and Zhang inequalities for convolution bodies, Adv. Math., 238, 50-69 (2013) · Zbl 1281.52005 · doi:10.1016/j.aim.2013.01.013
[3] Borell, C., The Brunn-Minkowski inequality in Gauss space, Invent. Math., 30, 2, 207-216 (1975) · Zbl 0292.60004 · doi:10.1007/BF01425510
[4] Campi, S.; Gronchi, P., The \(L_p\)-Busemann-Petty centroid inequality, Adv. Math., 167, 128-141 (2002) · Zbl 1002.52005 · doi:10.1006/aima.2001.2036
[5] Colesanti, A.; Salani, P., The Brunn-Minkowski inequality for \(p\)-capacity of convex bodies, Math. Ann., 327, 3, 459-479 (2003) · Zbl 1052.31005 · doi:10.1007/s00208-003-0460-7
[6] Colesanti, A., Brunn-Minkowski inequalities for variational functionals and related problems, Adv. Math., 194, 1, 105-140 (2005) · Zbl 1128.35318 · doi:10.1016/j.aim.2004.06.002
[7] Firey, W., \(p\)-means of convex bodies, Math. Scand., 10, 17-24 (1962) · Zbl 0188.27303 · doi:10.7146/math.scand.a-10510
[8] Gardner, RJ, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (NS), 39, 3, 355-405 (2002) · Zbl 1019.26008 · doi:10.1090/S0273-0979-02-00941-2
[9] Gardner, R.J.: Geometric tomography, 2nd edn. In: Encyclopedia of Mathematics and its Applications, vol. 58. Cambridge University Press, Cambridge (2006) · Zbl 1102.52002
[10] Lutwak, E., The Brunn-Minkowski-Firey theory. I. mixed volumes and the Minkowski problem, J. Diff. Geom., 38, 131-150 (1993) · Zbl 0788.52007
[11] Lutwak, E., The Brunn-Minkowski-Firey theory. II. affine and geominimal surface areas, Adv. Math., 118, 244-294 (1996) · Zbl 0853.52005 · doi:10.1006/aima.1996.0022
[12] Lutwak, E.; Yang, D.; Zhang, G., The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. Appl. Math., 48, 407-413 (2012) · Zbl 1252.52006 · doi:10.1016/j.aam.2011.11.003
[13] Okounkov, A., Brunn-Minkowski inequality for multiplicities, Invent. Math., 125, 3, 405-411 (1996) · Zbl 0893.52004 · doi:10.1007/s002220050081
[14] Schneider, R.: Convex bodies: the Brunn-Minkowski theory, 2nd edn. In: Encyclopedia of Mathematics and its Applications, vol. 151. Cambridge Univ. Press, Cambridge (2014) · Zbl 1287.52001
[15] Schütt, C.; Werner, E., Surface bodies and \(p\)-affine surface area, Adv. Math., 187, 98-145 (2004) · Zbl 1089.52002 · doi:10.1016/j.aim.2003.07.018
[16] Soltan, V., A characterization of homothetic simplices, Discrete Comput. Geom., 22, 193-200 (1999) · Zbl 0952.52003 · doi:10.1007/PL00009454
[17] Tsolomitis, A., Convolution bodies and their limiting behavior, Duke Math. J., 87, 1, 181-203 (1997) · Zbl 0874.52004 · doi:10.1215/S0012-7094-97-08708-1
[18] Werner, E.; Ye, DP, New \(L_p\) affine isoperimetric inequalities, Adv. Math., 218, 762-780 (2008) · Zbl 1155.52002 · doi:10.1016/j.aim.2008.02.002
[19] Ye, D., Zhu, B., Zhou, J.: The mixed \(L_p\) geominimal surface areas for multiple convex bodies. Ind. Univ. Math. J. 64(5), 1513-1552 (2015) · Zbl 1335.52012
[20] Zhu, B.; Luo, X., Optimal problem for mixed \(p\)-capacities, J. Math. Soc. Japan, 71, 4, 1049-1079 (2019) · Zbl 1432.52007 · doi:10.2969/jmsj/80268026
[21] Zhu, B.; Zhou, J.; Xu, W., \(L_p\) mixed geominimal surface area, J. Math. Anal. Appl., 422, 1247-1263 (2015) · Zbl 1321.52003 · doi:10.1016/j.jmaa.2014.09.035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.