×

Stability analysis of fractional order fuzzy cellular neural networks with leakage delay and time varying delays. (English) Zbl 07837813

Summary: In this paper we investigated the stability of fractional order fuzzy cellular neural networks with leakage delay and time varying delays. Based on Lyapunov theory and applying bounded techniques of fractional calculation, sufficient criterion are established to guarantee the stability. Hybrid feedback control is applied to derive the proposed results. Finally, numerical examples with simulation results are given to illustrate the effectiveness of the proposed method.

MSC:

93Cxx Model systems in control theory
34Axx General theory for ordinary differential equations
92Bxx Mathematical biology in general
Full Text: DOI

References:

[1] Liu, F.; Meerschaert, M.; Momani, S.; Leonenko, N.; Chen, W.; Agrawal, O., Fractional differential equations, Int. J. Differ. Equ. Appl., 2013, (2010)
[2] Haubold, H.; Mathai, A., An Introduction to Fractional CalculusAn Introduction to Fractional Calculus, (2017)
[3] Dalir, M., Applications of fractional calculus, Appl. Math. Sci., 4, 1021-1032, (2010) · Zbl 1195.26011
[4] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D., Bifurcation and chaos in non integer order cellular neural networks, Int. J. Bifurcation Chaos, 8, 1527-1539, (1998) · Zbl 0936.92006
[5] Chen, B. S.; Chen, J. J., Global asymptotical \(\omega \)-periodicity of a fractional order non-autonomous neural networks, Neural Netw., 68, 78-88, (2015) · Zbl 1398.34014
[6] Syed Ali, M.; Palanisamy, L.; Yogambigai, J.; Wang, L., Passivity-based synchronization of Markovian jump complex dynamical networks with time-varying delays, parameter uncertainties, reaction-diffusion terms, and sampled-data control, J. Comput. Appl. Math., 352, 79-92, (2019) · Zbl 1410.93115
[7] Syed Ali, M.; Yogambigai, J.; Saravanan, S.; Elakkia, S., Stochastic stability of neutral-type Markovian-jumping BAM neural networks with time varying delays, J. Comput. Appl. Math., 349, 142-156, (2019), 10 2019 · Zbl 1406.34095
[8] Syed Ali, M.; Yogambigai, J., Extended dissipative synchronization of complex dynamical networks with additive time-varying delay and discrete-time information, J. Comput. Appl. Math., 348, 328-341, (2019) · Zbl 1405.93030
[9] Chen, J. J.; Zeng, Z. G.; Jiang, P., Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Netw., 51, 1-8, (2013) · Zbl 1306.34006
[10] Kaslik, E.; Sivasundaram, S., Nonlinear dynamics and chaos in fractional order neural networks, Neural Netw., 32, 245-256, (2012) · Zbl 1254.34103
[11] Stamova, I., Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays, Nonlinear Dynam., 77, 1251-1260, (2014) · Zbl 1331.93102
[12] Li, H. Q.; Liao, X. F.; Luo, M. W., A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation, Nonlinear Dynam., 68, 137-149, (2012) · Zbl 1243.93033
[13] Yin, C.; Cheng, Y.; Chen, Y. Q.; Stark, B.; Zhong, S. M., Adaptive fractional-order switching-type control method design for 3D fractional order nonlinear systems, Nonlinear Dynam., 82, 39-52, (2015) · Zbl 1348.93216
[14] Yin, C.; Zhong, S. M.; Chen, W., Design of sliding mode controller for a class of fractional-order chaotic systems, Commun. Nonlinear Sci. Numer. Simul., 17, 356-366, (2012) · Zbl 1248.93041
[15] Chen, B. S.; Chen, J. J., Global asymptotical \(\omega \)-periodicity of a fractional-order non-autonomous neural networks, Neural Netw., 68, 78-88, (2015) · Zbl 1398.34014
[16] Chen, L. P.; Chai, Y.; Wu, R. C.; Ma, T. D.; Zhai, H. Z., Dynamic analysis of a class of fractional-order neural networks with delay, Neurocomputing, 111, 190-194, (2013)
[17] Quanxin, Z.; Shiyun, S.; Tianren, T., Mean square exponential stability of stochastic nonlinear delay systems of, Internat. J. Control, 90, 2384-2393, (2017) · Zbl 1380.93279
[18] Lee, SM.; Kwon, OM.; Lee, SH., Improved stability criteria for sampled-data systems using modified free weighting matrix, J. Frankl. Inst., 356, 2198-2211, (2019) · Zbl 1409.93045
[19] Kumar, Rakesh; Das, Subir; Cao, Yang, Effects of infinite occurrence of hybrid impulses with quasi-synchronization of parameter mismatched neural networks, Neural Netw., 122, 106-116, (2020)
[20] Cao, Yang; Zhang, Liangyin; Li, Chanying; Chen, Michael Z. Q., Observer-based consensus tracking of nonlinear agents in hybrid varying directed topology, IEEE Trans. Cybern., 47, 8, 2212-2222, (2017)
[21] Cao, Yang; Sriraman, R.; Samidurai, R., Stability and stabilization analysis of nonlinear time-delay systems with randomly occurring controller gain fluctuation, Math. Comput. Simulation, 171, 36-51, (2020) · Zbl 1510.93340
[22] Lv, Z.-S.; Zhu, C.-P.; Nie, P.; Zhao, J.; Yang, H.-J.; Wang, Y.-J.; Hu, C.-K., Exponential distance distribution of connected neurons in simulations of two-dimensional in vitro neural network development, Front. Phys., 12, Article 128902 pp., (2017)
[23] Zeng, H.-L.; Zhu, C.-P.; Wang, S.-X.; Guo, Y.-D.; Gu, Z.-M.; Hu, C.-K., Scaling behaviorsand self-organized criticality of two-dimensional small-world neural networks, Physica A, 540, Article 123191 pp., (2020)
[24] Syed Ali, M.; Saravanan, S.; Palanisamy, L., Stochastic finite-time stability of reaction-diffusion cohen-grossberg neural networks with time-varying delays, Chinese J. Phys., 57, 314-328, (2019) · Zbl 1539.93190
[25] Vadivel, R.; Syed Ali, M.; Alzahrani, F., Robust H-infinity synchronization of Markovjump stochastic uncertain neural networks with decentralized event-triggered mechanism, Chinese J. Phys., 60, 68-87, (2019) · Zbl 07823572
[26] Balasubramaniam, P.; Syed Ali, M., Robust stability of uncertain fuzzy cellular neural networks with time-varying delays and reaction diffusion terms, Neurocomputing, 74, 439-446, (2010)
[27] Li, X.; Song, S., Impulsive control for existence, uniqueness and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays, IEEE Trans. Neural Netw. Learn. Syst., 24, 868-877, (2013)
[28] Du, Y.; Zhong, S.; Zhou, N.; Shi, K.; Cheng, J., Exponential stability for stochastic cohen-grossberg BAM neural networks with discrete and distributed time-varying delays, Neurocomputing, 127, 144-151, (2014)
[29] Syed Ali, M.; Gunasekaran, N.; Rani, ME., Robust stability of hopfield delayed neural networks via an augmented LK functional, Neurocomputing, 234, 198-204, (2017)
[30] Liu, S.; Li, XY.; Jiang, W.; Zhou, XF., Mittag-Leffler Stability of nonlinear fractional neutral singular systems, Commun. Nonlinear Sci. Numer. Simul., 17, 3961-3966, (2012) · Zbl 1263.34012
[31] Li, Y.; Chen, Y. Q.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct methodand generalized Mittag-Leffler stability, Comput. Math. Appl., 24, 1429-1468, (2010)
[32] Chua, L. O.; Yang, L., Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35, 1257-1272, (1988) · Zbl 0663.94022
[33] Roska, T.; Chua, L.o., Cellular neural networks with nonlinear and delay-type template elements and nonuniform grids, Int. J. Circuit Theory Appl., 20, 469-481, (1992) · Zbl 0775.92011
[34] Harrer, H.; Nossek, J. A., Discrete-time cellular neural networks, Int. J. Circuit Theory Appl., 20, 453-467, (1992) · Zbl 0775.92006
[35] Yang, T.; Yang, LB.; Wu, CW.; Chua, LO., Fuzzy cellular neural networks:theory, Int. J. Circuit Theory Appl., 181-186, (1996)
[36] Yang, T.; Yang, LB.; Wu, CW.; Chua, LO., Fuzzy cellular neural networks:applications, (Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings, (1996)), 225-230
[37] Huang, Z. D., Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays, Int. J. Mach. Learn. Cybern., 78, 1323-1331, (2016)
[38] Wang, S. T.; Wang, M., A new detection algorithm based on fuzzy cellular neural networks for white blood cell detection, IEEE Trans. Inf. Technol. Biomed., 10, 5-10, (2006)
[39] Ma, W. Y.; Li, C. P.; Wu, Y. J., Impulsive synchronization of fractional Takagi-Sugeno fuzzy complex networks, Chaos, 26, Article 084311 pp., (2016) · Zbl 1378.34004
[40] Shen, H.; Li, F.; Yan, H.; Karimi, H. R.; Lam, H. K., Finite-time event-triggered \(H_\infty\) control for T-S fuzzy Markov jump systems, IEEE Trans. Fuzzy Syst., 26, 3122-3135, (2018)
[41] Shen, H.; Li, F.; Wu, Z.; Park, J. H.; Sreeram, Victor., Victor sreeram fuzzy-model-based non-fragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters, IEEE Trans. Fuzzy Syst., 26, 3428-3439, (2018)
[42] Branicky, M. S., Introduction to Hybrid Systems, 91-116, (2005), Springer
[43] Alur, R.; Henzinger, T.; Sontag, E., Hybrid Systems III, Vol. 1066, (1996), Springer
[44] Antsaklis, P. J.; Kohn, W.; Nerode, A.; Sastry, S., Hybrid Systems V, Vol. 1273, (1997), Springer
[45] TomlinMark, C. J.; Greenstreet, R., Hybrid Systems: Computation and Control, Vol. 2289, (2002), Springer · Zbl 0989.00055
[46] Morse, A. S., Control Using Logic-Based Switching, 1-276, (1997), Springer · Zbl 0864.00080
[47] Antsaklis, P. J., Special issue on hybrid systems: Theory and applications - A brief introduction to the theory and applications of hybrid systems, Proc. IEEE, 88, 879-887, (2000)
[48] Wardi, Y.; Egerstedt, M.; Lennartson, B.; Tabuada, P., Hybrid systems, Nonlinear Anal., (2019)
[49] Syed Ali, M.; Yogambigai, J., Synchronization of complex dynamical networks with hybrid coupling delays on time scales by handling multitude Kronecker product terms, Appl. Math. Comput., 291, 244-258, (2016) · Zbl 1410.34157
[50] A. Feuer, G.C. Goodwin, M. Salgado, Potential benefits of hybrid control for linear time invariant plants, in: Proceedings of the 1997 American Control Conference, Vol. 5 (1997) pp. 2790-2794.
[51] N.H. McClamroch, C. Rui, I. Kolmanovsky, M. Reyhanoglu, Hybrid closed loop systems: A nonlinear control perspective, in: Proceedings of the 36th IEEE Conference on Decision and Control, Vol. 1 (1997) pp. 114-119.
[52] van der Schaft, A. J.; Schumacher, J. M., An introduction to hybrid dynamical systems, Springer, 251, 1-174, (1999)
[53] Lygeros, J.; Godbole, D.; Sastry, S., Verified hybrid controllers for automated vehicles, IEEE Trans. Automat. Control, 43, 522-539, (1998) · Zbl 0904.90057
[54] E. Frazzoli, Robust hybrid control for autonomous vehicle motion planning, in: Proceedings of the IEEE Conference on Decision and Control, Vol. 1 (2000) pp. 821-826.
[55] Frazzoli, E.; Dahleh, M. A.; Feron, E., A maneuver-based hybrid control architecture for autonomous vehicle motion planning, Inf. Technol. Dyn. Syst., 299-323, (2005)
[56] A. Balluchi, P. Soueres, A. Bicchi, Hybrid feedback control for pathtracking with a bounded-curvature vehicle, in: Proceedings of the Fourth International Workshop on Hybrid Systems, (2001) pp. 133-146. · Zbl 0991.93079
[57] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248, (2002) · Zbl 1014.34003
[58] Li, C.; Zhang, F., A survey on the stability of fractional differential equations, Eur. Phys. J. Spec. Top., 193, 27-47, (2011)
[59] Duatte-Mermoud, M. A.; Aguila-Camacho, N.; Gallegos, J. A.; Castro-Limares, R., Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 22, 650-659, (2015) · Zbl 1333.34007
[60] Maboobi, S. H.; Shahrokhi, M.; Pishkenari, H. N., Observer-based control design for three well-known chaotic systems, Chaos Solitions Fractals, 29, 381-392, (2006) · Zbl 1147.93390
[61] Wu, A.; Zeng, Z., Global Mittag-Leffler stabilization of fractional-order memristive neural networks, IEEE Trans. Neural Netw. Learn. Syst., 28, 1-12, (2015)
[62] Chen, J.; Zeng, Z.; Jiang, P., Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Netw.: Off. J. Int. Neural Netw. Soc., 51, 1-8, (2013) · Zbl 1306.34006
[63] Kuang, J., Applied Inequalities, (2004), Shandong Science and Technology Press
[64] Long Q. Song, S.; Wang D. Li, X., Stability analysis of fuzzy cellular neural networks with time delay in the leakage term and impulsive perturbations, J. Franklin Inst. B, 349, 7, 2461-2479, (2012) · Zbl 1287.93049
[65] Duan, L.; Wei, H.; Huang, L., Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations, Fuzzy Sets Syst., 361, 56-70, (2019) · Zbl 1423.93190
[66] Mani, P.; Rakkiyappan, R.; Lakshmanan, S.; Joo, Y. H., Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption, Inform. Sci., 491, 74-89, (2019) · Zbl 1454.93134
[67] Chen, J.; Li, C.; Yang, X., Asymptotic stability of delayed fractional-order fuzzy neural networks with impulse effects, J. Franklin Inst. B, 355, 15, 7595-7608, (2018) · Zbl 1398.93293
[68] Zhang, S.; Yu, Y.; Wang, H., Mittag-Leffler Stability of fractional-order hopfield neural networks, Nonlinear Anal. Hybrid Syst., 16, 104-121, (2015) · Zbl 1325.34016
[69] Ma, W.; Li, C.; Wu, Y.; Wu, Y., Synchronization of fractional fuzzy cellular neural networks with interactions, Chaos, 27, Article 103106 pp., (2017) · Zbl 1390.34011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.