×

Analysis and synchronization for a new fractional-order chaotic system with absolute value term. (English) Zbl 1267.34008

Summary: A new fractional-order chaotic system with absolute value term is introduced. Some dynamical behaviors are investigated and analyzed. Furthermore, synchronization of this system is achieved by utilizing the drive-response method and the feedback method. The suitable parameters for achieving synchronization are studied. Both the theoretical analysis and numerical simulations show the effectiveness of the two methods.

MSC:

34A08 Fractional ordinary differential equations
93D15 Stabilization of systems by feedback
34D06 Synchronization of solutions to ordinary differential equations
34K35 Control problems for functional-differential equations
Full Text: DOI

References:

[1] Li, C., Liao, X.F., Yu, J.B.: Generating chaos by Oja’s rule. Neurocomputing 55, 731–738 (2003) · doi:10.1016/S0925-2312(03)00413-2
[2] Liu, Y.J.: Circuit implementation and finite-time synchronization of the 4D Rabinovich hyperchaotic system. Nonlinear Dyn. 67, 89–96 (2012) · Zbl 1242.93056 · doi:10.1007/s11071-011-9960-2
[3] Lu, J.G.: Generating chaos via decentralized linear state feedback and a class of nonlinear functions. Chaos Solitons Fractals 25, 403–413 (2005) · Zbl 1092.37020 · doi:10.1016/j.chaos.2004.11.039
[4] Liu, Y.J., Yang, Q.G.: Dynamics of a new Lorenz-like chaotic system. Nonlinear Anal., Real World Appl. 11, 2563–2572 (2010) · Zbl 1202.34083 · doi:10.1016/j.nonrwa.2009.09.001
[5] Ross, B.: The development of fractional calculus 1695–1900. Historia Math. 4, 75–89 (1977) · Zbl 0358.01008 · doi:10.1016/0315-0860(77)90039-8
[6] He, G.L., Zhou, S.P.: What is the exact condition for fractional integrals and derivatives of Besicovitch functions to have exact box dimension. Chaos Solitons Fractals 26, 867–879 (2005) · Zbl 1072.37021 · doi:10.1016/j.chaos.2005.01.041
[7] Jumarie, G.: Fractional master equation: non-standard analysis and Liouville–Riemann derivative. Chaos Solitons Fractals 12, 2577–2587 (2001) · Zbl 0994.82062 · doi:10.1016/S0960-0779(00)00218-6
[8] Elwakil, S.A., Zahran, M.A.: Fractional integral representation of master equation. Chaos Solitons Fractals 10, 1545–1558 (1999) · Zbl 0988.82039 · doi:10.1016/S0960-0779(98)00176-3
[9] Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. CAS I 42, 485–490 (1995) · doi:10.1109/81.404062
[10] Yu, Y.G., Li, H.X., Wang, S., Yu, J.Z.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 42, 1181–1189 (2009) · Zbl 1198.37063 · doi:10.1016/j.chaos.2009.03.016
[11] Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003) · Zbl 1234.49040
[12] Li, C.G., Chen, G.R.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004) · doi:10.1016/j.physa.2004.04.113
[13] Wu, X., Wang, H., Zhu, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61, 407–417 (2010) · Zbl 1204.37035 · doi:10.1007/s11071-010-9658-x
[14] Zhang, R., Yang, S.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dyn. 66, 831–837 (2011) · Zbl 1242.93030 · doi:10.1007/s11071-011-9944-2
[15] Li, H., Liao, X., Luo, M.: A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dyn. 68, 137–149 (2012) · Zbl 1243.93033 · doi:10.1007/s11071-011-0210-4
[16] Zeng, C., Yang, Q., Wang, J.: Chaos and mixed synchronization of a new fractional-order system with one saddle and two stable node-foci. Nonlinear Dyn. 65, 457–466 (2011) · Zbl 1286.34016 · doi:10.1007/s11071-010-9904-2
[17] Song, L., Yang, J.Y., Xu, S.Y.: Chaos synchronization for a class of nonlinear oscillators with fractional order. Nonlinear Anal.: Theory Methods Appl. 72, 2326–2336 (2010) · Zbl 1187.34066 · doi:10.1016/j.na.2009.10.033
[18] Matouk, A.E.: Chaos, feedback control and synchronization of a fractional-order modified autonomous van der Pol–Duffing circuit. Commun. Nonlinear Sci. Numer. Simul. 16, 975–986 (2011) · Zbl 1221.93227 · doi:10.1016/j.cnsns.2010.04.027
[19] Mohammad, S.T., Mohammad, H.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387, 57–70 (2008) · doi:10.1016/j.physa.2007.08.039
[20] Chen, D., Liu, Y., Ma, X., Zhang, R.: Control of a class of fractional-order chaotic systems via sliding mode. Nonlinear Dyn. 67, 893–901 (2012) · Zbl 1242.93027 · doi:10.1007/s11071-011-0002-x
[21] Li, C., Yan, J.: The synchronization of three fractional differential systems. Chaos Solitons Fractals 32, 751–757 (2007) · doi:10.1016/j.chaos.2005.11.020
[22] Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010) · Zbl 1194.93105 · doi:10.1007/s11071-009-9609-6
[23] Deng, W.H.: Smoothness and stability of the solutions for nonlinear fractional differential equations. Nonlinear Anal.: Theory Methods Appl. 72, 1768–1777 (2009) · Zbl 1182.26009 · doi:10.1016/j.na.2009.09.018
[24] Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. Math. Anal. Appl. 265, 229–248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2000.7194
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.