×

Exact distributed quantum algorithm for generalized Simon’s problem. (English) Zbl 07850614

Summary: Simon’s problem is one of the most important problems demonstrating the power of quantum algorithms, as it greatly inspired the proposal of Shor’s algorithm. The generalized Simon’s problem is a natural extension of Simon’s problem and also a special hidden subgroup problem: Given a function \(f:\{0,1\}^n \rightarrow \{0,1\}^m\), it is promised that there exists a hidden subgroup \(S\le \mathbb{Z}_2^n\) of rank \(k\) such that for any \(x, y\in{\{0, 1\}}^n\), \(f(x) = f(y)\) iff \(x \oplus y \in S\). The goal of generalized Simon’s problem is to find the hidden subgroup \(S\). In this paper, we present two key contributions. Firstly, we characterize the structure of the generalized Simon’s problem in distributed scenario and introduce a corresponding distributed quantum algorithm. Secondly, we refine the algorithm to ensure exactness due to the application of quantum amplitude amplification technique. Our algorithm offers exponential speedup compared to the distributed classical algorithm. When contrasted with the quantum algorithm for the generalized Simon’s problem, our algorithm’s oracle requires fewer qubits, thus making it easier to be physically implemented. Particularly, the exact distributed quantum algorithm we develop for the generalized Simon’s problem outperforms the best previously proposed distributed quantum algorithm for Simon’s problem in terms of generalizability and exactness.

MSC:

68Qxx Theory of computing

References:

[1] Ambainis, A.: Superlinear advantage for exact quantum algorithms. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, STOC’13, pp. 891-900. ACM, New York, USA (2013). doi:10.1145/2488608.2488721 · Zbl 1293.68124
[2] Avron, J.; Casper, O.; Rozen, I., Quantum advantage and noise reduction in distributed quantum computing, Phys. Rev. A, 104, 2021 · doi:10.1103/PhysRevA.104.052404
[3] Barenco, A.; Bennett, CH; Cleve, R.; DiVincenzo, DP; Margolus, N.; Shor, P.; Sleator, T.; Smolin, JA; Weinfurter, H., Elementary gates for quantum computation, Phys. Rev. A, 52, 3457-3467, 1995 · doi:10.1103/PhysRevA.52.3457
[4] Beals, R.; Brierley, S.; Gray, O.; Harrow, A.; Kutin, S.; Linden, N.; Shepherd, D.; Stather, M., Efficient distributed quantum computing, Proc. Math. Phys. Eng. Sci., 469, 2153, 2013 · Zbl 1371.81074 · doi:10.1098/rspa.2012.0686
[5] Brassard, G.; Høyer, P.; Mosca, M.; Tapp, A., Quantum amplitude amplification and estimation, AMS Contemp. Math., 305, 53-74, 2002 · Zbl 1063.81024 · doi:10.1090/conm/305/05215
[6] Broadbent, A.; Tapp, A., Can quantum mechanics help distributed computing?, SIGACT News, 39, 3, 67-76, 2008 · doi:10.1145/1412700.1412717
[7] Buhrman, H.; Röhrig, H.; Rovan, B.; Vojtáš, P., Distributed quantum computing, Mathematical Foundations of Computer Science, 1-20, 2003, Berlin: Springer, Berlin · Zbl 1124.68361 · doi:10.1007/978-3-540-45138-9_1
[8] Buhrman, H.; de Wolf, R., Complexity measures and decision tree complexity: a survey, Theor. Comput. Sci., 288, 1, 21-43, 2002 · Zbl 1061.68058 · doi:10.1016/S0304-3975(01)00144-X
[9] Buhrman, H.; Dam, W.; Høyer, P.; Tapp, A., Multiparty quantum communication complexity, Phys. Rev. A, 60, 2737-2741, 1999 · doi:10.1103/PhysRevA.60.2737
[10] Cai, G.; Qiu, D., Optimal separation in exact query complexities for Simon’s problem, J. Comput. Syst. Sci., 97, 83-93, 2018 · Zbl 1398.68173 · doi:10.1016/j.jcss.2018.05.001
[11] Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: From communication to distributed computing! In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1-4. ACM, New York, USA (2018). doi:10.1145/3233188.3233224
[12] Chia, N.-H., Chung, K.-M., Lai, C.-Y.: On the need for large quantum depth. In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pp. 902-915. ACM, New York, USA (2020). doi:10.1145/3357713.3384291 · Zbl 07298297
[13] de Wolf, R., Quantum communication and complexity, Theor. Comput. Sci., 287, 1, 337-353, 2002 · Zbl 1061.81016 · doi:10.1016/S0304-3975(02)00377-8
[14] Denchev, VS; Pandurangan, G., Distributed quantum computing: A new frontier in distributed systems or science fiction?, SIGACT News, 39, 3, 77-95, 2008 · doi:10.1145/1412700.1412718
[15] Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC’96, pp. 212-219. ACM, New York, USA (1996). doi:10.1145/237814.237866 · Zbl 0922.68044
[16] Harrow, AW; Hassidim, A.; Lloyd, S., Quantum algorithm for linear systems of equations, Phys. Rev. Lett., 103, 2009 · doi:10.1103/PhysRevLett.103.150502
[17] Hasegawa, A., Le Gall, F.: An optimal oracle separation of classical and quantum hybrid schemes. In: Proceedings of 33rd International Symposium on Algorithms and Computation, pp. 1-14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). doi:10.4230/LIPIcs.ISAAC.2022.6 · Zbl 07911072
[18] Izumi, T., Le Gall, F.: Quantum distributed algorithm for the all-pairs shortest path problem in the CONGEST-CLIQUE model. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. PODC’19, pp. 84-93. ACM, New York, USA (2019). doi:10.1145/3293611.3331628 · Zbl 1541.68288
[19] Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology—CRYPTO 2016, pp. 207-237. Springer, Berlin (2016). doi:10.1007/978-3-662-53008-5_8 · Zbl 1391.94766
[20] Kaye, P.; Laflamme, R.; Mosca, M., An Introduction to Quantum Computing, 2006, Oxford: Oxford University Press, Oxford · doi:10.1093/oso/9780198570004.001.0001
[21] Kushilevitz, E.; Nisan, N., Communication Complexity, 1996, Cambridge: Cambridge University Press, Cambridge · Zbl 0869.68048 · doi:10.1017/CBO9780511574948
[22] Le Gall, F., Magniez, F.: Sublinear-time quantum computation of the diameter in CONGEST networks. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing. PODC’18, pp. 337-346. ACM, New York, USA (2018). doi:10.1145/3212734.3212744 · Zbl 1428.68385
[23] Le Gall, F., Nishimura, H., Rosmanis, A.: Quantum advantage for the LOCAL model in distributed computing. In: Niedermeier, R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 126, pp. 49:1-49:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). doi:10.4230/LIPIcs.STACS.2019.49 · Zbl 07559158
[24] Li, H., Qiu, D., Luo, L.: Distributed exact quantum algorithms for Deutsch-Jozsa problem (2023). arXiv:2303.10663
[25] Li, K.; Qiu, D.; Li, L.; Zheng, S.; Rong, Z., Application of distributed semi-quantum computing model in phase estimation, Inf. Process. Lett., 120, 23-29, 2017 · Zbl 1401.68082 · doi:10.1016/j.ipl.2016.12.002
[26] Ngoenriang, N., Xu, M., Supittayapornpong, S., Niyato, D., Yu, H., Shen, X.: Optimal Stochastic Resource Allocation for Distributed Quantum Computing. (2022). arXiv:2210.02886
[27] Ngoenriang, N.; Xu, M.; Kang, J.; Niyato, D.; Yu, H.; Shen, X., \(DQC^2\) O: distributed quantum computing for collaborative optimization in future networks, IEEE Commun. Mag., 61, 5, 188-194, 2023 · doi:10.1109/MCOM.003.2200573
[28] Nielsen, MA; Chuang, IL, Quantum Computation and Quantum Information, 2010, Cambridge: Cambridge University Press, Cambridge · Zbl 1288.81001
[29] Preskill, J., Quantum Computing in the NISQ era and beyond, Quantum, 2, 79, 2018 · doi:10.22331/q-2018-08-06-79
[30] Qiu, D., Luo, L., Xiao, L.: Distributed Grover’s algorithm. Theor. Comput. Sci. 993, 114461 (2024). doi:10.1016/j.tcs.2024.114461 · Zbl 07819256
[31] Qiu, D.; Zheng, S., Generalized Deutsch-Jozsa problem and the optimal quantum algorithm, Phys. Rev. A, 97, 2018 · doi:10.1103/PhysRevA.97.062331
[32] Qiu, D.; Zheng, S., Revisiting Deutsch-Jozsa algorithm, Inf. Comput., 275, 2020 · Zbl 1496.68152 · doi:10.1016/j.ic.2020.104605
[33] Santoli, T.; Schaffner, C., Using Simon’s algorithm to attack symmetric-key cryptographic primitives, Quantum Inf. Comput., 17, 1-2, 65-78, 2017 · doi:10.26421/QIC17.1-2-4
[34] Shor, PW, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26, 5, 1484-1509, 1997 · Zbl 1005.11065 · doi:10.1137/S0097539795293172
[35] Simon, DR, On the power of quantum computation, SIAM J. Comput., 26, 5, 1474-1483, 1997 · Zbl 0883.03024 · doi:10.1137/S0097539796298637
[36] Tan, J.; Xiao, L.; Qiu, D.; Luo, L.; Mateus, P., Distributed quantum algorithm for Simon’s problem, Phys. Rev. A, 106, 2022 · doi:10.1103/PhysRevA.106.032417
[37] Wu, Z.; Qiu, D.; Tan, J.; Li, H.; Cai, G., Quantum and classical query complexities for generalized Simon’s problem, Theor. Comput. Sci., 924, 171-186, 2022 · Zbl 1535.68104 · doi:10.1016/j.tcs.2022.05.025
[38] Xiao, L., Qiu, D., Luo, L., Mateus, P.: Distributed Quantum-classical Hybrid Shor’s Algorithm (2023). arXiv:2304.12100
[39] Xiao, L.; Qiu, D.; Luo, L.; Mateus, P., Distributed Shor’s algorithm, Quantum Inf. Comput., 23, 27-44, 2022 · doi:10.26421/QIC23.1-2-3
[40] Yao, A.C.-C.: Quantum circuit complexity. In: Proceedings of the 1993 IEEE 34th Annual Foundations of Computer Science. SFCS ’93, pp. 352-361. IEEE Computer Society, USA (1993). doi:10.1109/SFCS.1993.366852 · Zbl 0850.68166
[41] Yao, A.C.-C.: Some complexity questions related to distributive computing(preliminary report). In: Proceedings of the 11th Annual ACM Symposium on Theory of Computing. STOC’79, pp. 209-213. ACM, New York, USA (1979). doi:10.1145/800135.804414
[42] Ye, Z.; Huang, Y.; Li, L.; Wang, Y., Query complexity of generalized Simon’s problem, Inf. Comput., 281, 2021 · Zbl 1518.68135 · doi:10.1016/j.ic.2021.104790
[43] Yimsiriwattana, SJL Jr.; Donkor, E.; Pirich, AR; Brandt, HE, Distributed quantum computing: a distributed Shor algorithm, Quantum Information Science II, 360-372, 2004, New York: Springer, New York · doi:10.1117/12.546504
[44] Zhou, B-M; Yuan, Z., Breaking symmetric cryptosystems using the offline distributed Grover-meets-Simon algorithm, Quantum Inf. Process., 22, 333, 2023 · Zbl 1542.81447 · doi:10.1007/s11128-023-04089-9
[45] Zhou, X.; Qiu, D.; Luo, L., Distributed exact Grover’s algorithm, Front. Phys., 18, 51305, 2023 · doi:10.1007/s11467-023-1327-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.