×

A parsimonious model for generating arbitrage-free scenario trees. (English) Zbl 1468.91165

Summary: Simulation models of economic, financial and business risk factors are widely used to assess risks and support decision-making. Extensive literature on scenario generation methods aims at describing some underlying stochastic processes with the least number of scenarios to overcome the ‘curse of dimensionality’. There is, however, an important requirement that is usually overlooked when one departs from the application domain of security pricing: the no-arbitrage condition. We formulate a moment matching model to generate multi-factor scenario trees for stochastic optimization satisfying no-arbitrage restrictions with a minimal number of scenarios and without any distributional assumptions. The resulting global optimization problem is quite general. However, it is non-convex and can grow significantly with the number of risk factors, and we develop convex lower bounding techniques for its solution exploiting the special structure of the problem. Applications to some standard problems from the literature show that this is a robust approach for tree generation. We use it to price a European basket option in complete and incomplete markets.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
93E20 Optimal stochastic control
90C15 Stochastic programming
Full Text: DOI

References:

[1] Carinõ, D.R. and Ziemba, W.T., Formulation of the Russel-Yasuda Kasai financial planning model. Oper. Res., 1998, 46(4), 433-449. · Zbl 0993.91503 · doi:10.1287/opre.46.4.433
[2] Chen, Z. and Xu, D., Knowledge-based scenario tree generation methods and application in multiperiod portfolio selection problem. Appl. Stoch. Models Bus. Ind., 2014, 30, 240-257. · Zbl 07879460
[3] Chen, Z. and Xu, D., Knowledge-based scenario tree generation methods and application in multiperiod portfolio selection problem. Appl. Stoch. Models Bus. Ind., 2014, 30, 240-257. · Zbl 1163.62081 · doi:10.1002/asmb.1970
[4] Cochrane, J.H. and Saa-Requejo, J., Beyond arbitrage: Good-deal asset price bounds in incomplete markets. J. Polit. Econ., 2000, 108(1), 79-119.
[5] Cherubini, U., Luciano, E. and Vecchiato, W., Copula Methods in Finance, 2004 (Wiley: Chichester). · Zbl 1279.91171 · doi:10.1002/9781118673331
[6] Consiglio, A. and De Giovanni, D., Evaluation of insurance products with guarantee in incomplete markets. Insur.: Math. Econ., 2008, 42(1), 332-342. · Zbl 1141.91495
[7] Cochrane, J.H. and Saa-Requejo, J., Beyond arbitrage: Good-deal asset price bounds in incomplete markets. J. Polit. Econ., 2000, 108(1), 79-119. · doi:10.1086/262112
[8] Consiglio, A., Saunders, D. and Zenios, S.A., Asset and liability management for insurance products with minimum guarantees: The UK case. J. Bank. Finance, 2006, 30, 645-667.
[9] Consigli, G., Iaquinta, G. and Moriggia, V., Path-dependent scenario trees for multistage stochastic programs in finance. Quant. Finance, 2010, 12(8), 1265-1281. · Zbl 1219.62087
[10] Dembo, R., Aziz, A., Rosen, D. and Zerbs, M., Mark to Future–A Framework for Measuring Risk and Reward, 2000 (Algorithmics Publications: Toronto).
[11] Consiglio, A. and De Giovanni, D., Evaluation of insurance products with guarantee in incomplete markets. Insur.: Math. Econ., 2008, 42(1), 332-342. · Zbl 1141.91495 · doi:10.1016/j.insmatheco.2007.04.005
[12] Dupačová, J., Consigli, G. and Wallace, S.W., Scenarios for multistage stochastic programs. Ann. Oper. Res., 2000, 100, 25-53. · Zbl 1017.90068
[13] Consiglio, A., Nielsen, S. and Zenios, S.A., Practical Financial Optimization: A Libray of GAMS Models, 2009 (Wiley: Chichester). Available online at: https://www.gams.com/finlib/libhtml/ (accessed 17 November 2015). · Zbl 1213.91001
[14] Floudas, C. and Gounaris, C., A review of recent advances in global optimization. J. Global Optim., 2009, 45(1), 3-38. · Zbl 1180.90245
[15] Consiglio, A., Saunders, D. and Zenios, S.A., Asset and liability management for insurance products with minimum guarantees: The UK case. J. Bank. Finance, 2006, 30, 645-667. · Zbl 1188.91242 · doi:10.1016/j.jbankfin.2005.04.009
[16] Geyer, A., Hanke, M. and Weissensteiner, A., No-arbitrage bounds for financial scenarios. Eur. J. Oper. Res., 2014a, 236(2), 657-663. · Zbl 1317.91071
[17] Date, P., Mamon, R. and Jalen, L., A new moment matching algorithm for sampling from partially specified symmetric distributions. Oper. Res. Lett., 2008, 36, 669-672. · Zbl 1317.91071 · doi:10.1016/j.orl.2008.07.004
[18] Glasserman, P., Monte Carlo Methods in Financial Engineering, 2004 (Springer-Verlag: New York). · Zbl 1038.91045
[19] Dembo, R., Aziz, A., Rosen, D. and Zerbs, M., Mark to Future-A Framework for Measuring Risk and Reward, 2000 (Algorithmics Publications: Toronto). · Zbl 1144.90442
[20] Høyland, K., Kaut, M. and Wallace, S.W., A heuristic for moment matching scenario generation. Comput. Optim. Appl., 2003, 24, 169-185. · Zbl 1094.90579
[21] Dembo, R., Rosen, D. and Saunders, D., Valuation in incomplete markets: An optimization approach. Algo Res. Q., 2000, 3(2), 29-37. · Zbl 1232.91132
[22] Jamshidian, F. and Zhu, Y., Scenario simulation: Theory and methodology. Finance Stoch., 1997, 1(1), 43-67. · Zbl 0883.90017
[23] Dupačová, J., Consigli, G. and Wallace, S.W., Scenarios for multistage stochastic programs. Ann. Oper. Res., 2000, 100, 25-53. · Zbl 1171.90490 · doi:10.1023/A:1019206915174
[24] King, A.J., Duality and martingales: A stochastic programming perspective on contingent claims. Math. Program., Ser. B, 2002, 91, 543-562. · Zbl 1074.91018
[25] Dupačová, J., Gröewe-Kuska, N. and Römish, W., Scenario reduction in stochastic programming. Math. Program., 2003, 95(3), 493-511. · Zbl 1232.91135 · doi:10.1007/s10107-002-0331-0
[26] Lu, H., Li, H., Gounaris, C. and Floudas, C., Convex relaxation for solving posynomial programs. J. Global Optim., 2010, 46(1), 147-154. · Zbl 1181.90225
[27] Floudas, C. and Gounaris, C., A review of recent advances in global optimization. J. Global Optim., 2009, 45(1), 3-38. · Zbl 1169.90453 · doi:10.1007/s10898-008-9332-8
[28] Maranas, C. and Floudas, C., Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim., 1995, 7(2), 143-182. · Zbl 0841.90115
[29] Geyer, A., Hanke, M. and Weissensteiner, A., No-arbitrage conditions, scenario trees, and multi-asset financial optimization. Eur. J. Oper. Res., 2010, 206(3), 609-613. · Zbl 1188.91242 · doi:10.1016/j.ejor.2010.03.022
[30] Mulvey, J.M. and Vladimirou, H., Stochastic network programming for financial planning problems. Manage. Sci., 1992, 38(11), 1642-1664. · Zbl 0825.90062
[31] Geyer, A., Hanke, M. and Weissensteiner, A., No-arbitrage bounds for financial scenarios. Eur. J. Oper. Res., 2014a, 236(2), 657-663. · Zbl 1317.91071 · doi:10.1016/j.ejor.2014.01.027
[32] Rebonato, R., Mahal, S., Joshi, M., Buchholz, L. and Nyholm, K., Evolving yield curves in the real-world measures: A semi-parametric approach. J. Risk, 2005, 7(3), 29-61.
[33] Geyer, A., Hanke, M. and Weissensteiner, A., No-arbitrage ROM simulation. J. Econ. Dyn. Control, 2014b, 45, 66-79. · Zbl 1402.91891 · doi:10.1016/j.jedc.2014.05.017
[34] Tsai, J. and Lin, M., Finding all solutions of systems of nonlinear equations with free variables. Eng. Optim., 2007, 39(6), 649-659.
[35] Glasserman, P., Monte Carlo Methods in Financial Engineering, 2004 (Springer-Verlag: New York). · Zbl 1038.91045
[36] Xu, D., Chen, Z. and Yang, L., Scenario tree generation approaches using k-means and lp moment matching methods. J. Comput. Appl. Math., 2012, 236, 4561-4579. · Zbl 1245.05106
[37] Hochreiter, R. and Pflug, G.C., Financial scenario generation for stochastic multi-stage decision processes as facility location problems. Ann. Oper. Res., 2007, 152(1), 257-272. · Zbl 1142.91008 · doi:10.1007/s10479-006-0140-6
[38] Zenios, S.A., Holmer, M.R., McKendall, R. and Vassiadou-Zeniou, C., Dynamic models for fixed-income portfolio management under uncertainty. J. Econ. Dyn. Control, 1998, 22, 1517-1541. · Zbl 0914.90028
[39] Høyland, K., Kaut, M. and Wallace, S.W., A heuristic for moment matching scenario generation. Comput. Optim. Appl., 2003, 24, 169-185. · Zbl 1094.90579 · doi:10.1023/A:1021853807313
[40] Høyland, K. and Wallace, S.W., Generation scenario trees for multistage decision problems. Manage. Sci., 2001, 47(2), 295-307. · Zbl 1232.91132 · doi:10.1287/mnsc.47.2.295.9834
[41] Jamshidian, F. and Zhu, Y., Scenario simulation: Theory and methodology. Finance Stoch., 1997, 1(1), 43-67. · Zbl 0883.90017 · doi:10.1007/s007800050016
[42] Kaut, M. and Wallace, S.W., Evaluation of scenario generation methods for stochastic programming. Pac. J. Optim., 2007, 3, 257-271. · Zbl 1171.90490
[43] King, A.J., Duality and martingales: A stochastic programming perspective on contingent claims. Math. Program., Ser. B, 2002, 91, 543-562. · Zbl 1074.91018 · doi:10.1007/s101070100257
[44] Klaassen, P., Comment on “Generating scenario trees for multistage decision problems”. Manage. Sci., 2002, 48(11), 1512-1516. · Zbl 1232.91135 · doi:10.1287/mnsc.48.11.1512.261
[45] Lu, H., Li, H., Gounaris, C. and Floudas, C., Convex relaxation for solving posynomial programs. J. Global Optim., 2010, 46(1), 147-154. · Zbl 1181.90225 · doi:10.1007/s10898-009-9414-2
[46] Lundell, A., Westerlund, J. and Westerlund, T., Some transformation techniques with applications in global optimization. J. Global Optim., 2009, 43, 391-405. · Zbl 1169.90453 · doi:10.1007/s10898-007-9223-4
[47] Maranas, C. and Floudas, C., Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim., 1995, 7(2), 143-182. · Zbl 0841.90115 · doi:10.1007/BF01097059
[48] Maranas, C. and Floudas, C., Global optimization in generalized geometric programming. Comput. Chem. Eng., 1997, 21, 351-569. · doi:10.1016/S0098-1354(96)00282-7
[49] Mulvey, J.M. and Vladimirou, H., Stochastic network programming for financial planning problems. Manage. Sci., 1992, 38(11), 1642-1664. · Zbl 0825.90062 · doi:10.1287/mnsc.38.11.1642
[50] Pliska, S.R., Introduction to Mathematical Finance: Discrete Time Models, 1997 (Blackwell: Malden, MA).
[51] Rebonato, R., Mahal, S., Joshi, M., Buchholz, L. and Nyholm, K., Evolving yield curves in the real-world measures: A semi-parametric approach. J. Risk, 2005, 7(3), 29-61.
[52] Topaloglou, N., Vladimirou, H. and Zenios, S.A., Pricing options on scenario trees. J. Bank. Finance, 2008, 32(2), 283-298. · doi:10.1016/j.jbankfin.2007.03.010
[53] Tsai, J. and Lin, M., Finding all solutions of systems of nonlinear equations with free variables. Eng. Optim., 2007, 39(6), 649-659.
[54] Vandekerckhove, J., Matzke, D. and Wagenmakers, E.-J., Model comparison and the principle of parsimony. In Oxford Handbook of Computational and Mathematical Psychology, edited by J. Busemeyer, J. Townsend, Z.J. Wang and A. Eidels, pp. 300-317, 2015 (Oxford University Press: Oxford).
[55] Xu, D., Chen, Z. and Yang, L., Scenario tree generation approaches using k-means and lp moment matching methods. J. Comput. Appl. Math., 2012, 236, 4561-4579. · Zbl 1245.05106 · doi:10.1016/j.cam.2012.05.020
[56] Zenios, S.A., Practical Financial Optimization: Decision making for Financial Engineers, 2007 (Blackwell: Malden, MA). · Zbl 1142.91008
[57] Zenios, S.A., Holmer, M.R., McKendall, R. and Vassiadou-Zeniou, C., Dynamic models for fixed-income portfolio management under uncertainty. J. Econ. Dyn. Control, 1998, 22, 1517-1541. · Zbl 0914.90028 · doi:10.1016/S0165-1889(97)00115-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.