×

A proximal-point outer approximation algorithm. (English) Zbl 1466.90055

Summary: Many engineering and scientific applications, e.g. resource allocation, control of hybrid systems, scheduling, etc., require the solution of mixed-integer non-linear problems (MINLPs). Problems of such class combine the high computational burden arising from considering discrete variables with the complexity of non-linear functions. As a consequence, the development of algorithms able to efficiently solve medium-large MINLPs is still an interesting field of research. In the last decades, several approaches to tackle MINLPs have been developed. Some of such approaches, usually defined as exact methods, aim at finding a globally optimal solution for a given MINLP at expense of a long execution time, while others, generally defined as heuristics, aim at discovering suboptimal feasible solutions in the shortest time possible. Among the various proposed paradigms, outer approximation (OA) and feasibility pump (FP), respectively as exact method and as heuristic, deserve a special mention for the number of relevant publications and successful implementations related to them. In this paper we present a new exact method for convex mixed-integer non-linear programming called proximal outer approximation (POA). POA blends the fundamental ideas behind FP into the general OA scheme that attepts to yield faster and more robust convergence with respect to OA while retaining the good performances in terms of fast generation of feasible solutions of FP.

MSC:

90C11 Mixed integer programming

References:

[1] Duran, MA; Grossmann, IE, An outer-approximation algorithm for a class of mixed-integer nonlinear programs, Math. Program., 36, 3, 307-339 (1986) · Zbl 0619.90052 · doi:10.1007/BF02592064
[2] Quesada, I.; Grossmann, IE, An LP/NLP based branch and bound algorithm for convex MINLP optimization problems, Comput. Chem. Eng., 16, 10-11, 937-947 (1992) · doi:10.1016/0098-1354(92)80028-8
[3] Leyffer, S., Generalized outer approximation, Encycl. Optim., 2, 1, 247-254 (2001)
[4] Hunting, M.: The AIMMS outer approximation algorithm for MINLP. Technical Report AIMMS B.V. (2011)
[5] Kronqvist, J.; Bernal, DE; Lundell, A.; Westerlund, T., A center-cut algorithm for quickly obtaining feasible solutions and solving convex MINLP problems, Comput. Chem. Eng., 122, 105-113 (2019) · doi:10.1016/j.compchemeng.2018.06.019
[6] Fletcher, R.; Ley, S.; Leyffer, S., Solving mixed integer nonlinear programs by outer approximation, Math. Program., 66, 1-3, 327-349 (1994) · Zbl 0833.90088 · doi:10.1007/BF01581153
[7] Grossman, IE, Review of nonlinear mixed-integer and disjunctive programming techniques, Optim. Eng., 3, 3, 227-252 (2002) · Zbl 1035.90050 · doi:10.1023/A:1021039126272
[8] Leyffer, S.: Deterministic Methods for Mixed Integer Nonlinear Programming. Ph.D. thesis (1993)
[9] Kronqvist, J.; Bernal, DE; Lundell, A.; Grossmann, IE, A review and comparison of solvers for convex MINLP, Optim. Eng., 20, 2, 397-455 (2019) · doi:10.1007/s11081-018-9411-8
[10] Kronqvist, J.; Lundell, A.; Westerlund, T., The extended supporting hyperplane algorithm for convex mixed-integer nonlinear programming, J. Glob. Optim., 64, 2, 249-272 (2016) · Zbl 1339.90247 · doi:10.1007/s10898-015-0322-3
[11] Lundell, A., Kronqvist, J., Westerlund, T.: The Supporting Hyperplane Optimization Toolkit: A Polyhedral Outer Approximation Based Convex MINLP Solver Utilizing a Single Branching Tree Approach (2018) · Zbl 1402.90098
[12] Kronqvist, J.; Bernal, DE; Grossmann, IE, Using regularization and second order information in outer approximation for convex MINLP, Math. Program., 180, 285-310 (2020) · Zbl 1461.65168 · doi:10.1007/s10107-018-1356-3
[13] Fischetti, M.; Salvagnin, D., Feasibility pump 2.0, Math. Program. Comput., 1, 2-3, 201-222 (2009) · Zbl 1180.90208 · doi:10.1007/s12532-009-0007-3
[14] Berthold, T., RENS: the optimal rounding, Math. Program. Comput., 6, 1, 33-54 (2014) · Zbl 1304.90147 · doi:10.1007/s12532-013-0060-9
[15] D’Ambrosio, C.; Frangioni, A.; Liberti, L.; Lodi, A., A storm of feasibility pumps for nonconvex MINLP, Math. Program., 136, 2, 375-402 (2012) · Zbl 1257.90056 · doi:10.1007/s10107-012-0608-x
[16] Bernal, DE; Vigerske, S.; Trespalacios, F.; Grossmann, IE, Improving the performance of DICOPT in convex MINLP problems using a feasibility pump, Optim. Methods Softw., 35, 1, 171-190 (2020) · Zbl 1425.90070 · doi:10.1080/10556788.2019.1641498
[17] Achterberg, T.; Berthold, T., Improving the feasibility pump, Discrete Optim., 4, 1, 77-86 (2007) · Zbl 1170.90443 · doi:10.1016/j.disopt.2006.10.004
[18] Bonami, P.; Cornuéjols, G.; Lodi, A.; Margot, F., A feasibility pump for mixed integer nonlinear programming, Math. Program., 119, 2, 331-352 (2009) · Zbl 1163.90013 · doi:10.1007/s10107-008-0212-2
[19] Fischetti, M.; Glover, F.; Lodi, A., The feasibility pump, Math. Program., 104, 1, 91-104 (2005) · Zbl 1077.90039 · doi:10.1007/s10107-004-0570-3
[20] Sharma, S.; Knudsen, BR; Grimstad, B., Towards an objective feasibility pump for convex MINLPs, Comput. Optim. Appl., 63, 3, 737-753 (2016) · Zbl 1343.90053 · doi:10.1007/s10589-015-9792-y
[21] Fischetti, M.; Monaci, M., Proximity search for 0-1 mixed-integer convex programming, J. Heurist., 20, 6, 709-731 (2014) · Zbl 1360.90173 · doi:10.1007/s10732-014-9266-x
[22] Hijazi, H.; Bonami, P.; Ouorou, A., An outer-inner approximation for separable mixed-integer nonlinear programs, INFORMS J. Comput., 26, 1, 31-44 (2014) · Zbl 1356.90091 · doi:10.1287/ijoc.1120.0545
[23] Geißler, B.; Morsi, A.; Schewe, L.; Schmidt, M., Penalty alternating direction methods for mixed-integer optimization: a new view on feasibility pumps, SIAM J. Optim., 27, 3, 1611-1636 (2017) · Zbl 1371.65051 · doi:10.1137/16M1069687
[24] De Santis, M.; Lucidi, S.; Rinaldi, F., A new class of functions for measuring solution integrality in the feasibility pump approach, SIAM J. Optim., 23, 3, 1575-1606 (2013) · Zbl 1282.90099 · doi:10.1137/110855351
[25] MINLPLib (collection of mixed-integer problems), homepage: https://www.minlplib.org
[26] Cplex (MI(L/Q)P solver), homepage: https://www.ibm.com/analytics/cplex-optimizer
[27] Wächter, A., Biegler, L.T.: On the Implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25-57 (2006) · Zbl 1134.90542
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.