×

Application of sinc-Galerkin method to singularly perturbed parabolic convection-diffusion problems. (English) Zbl 1301.65108

This paper proposes a numerical method to solve singularly perturbed parabolic initial boundary value problems (IBVPs) of the form: \[ \begin{gathered}\dfrac{\partial u}{\partial t} - \varepsilon \dfrac{\partial^2 u}{\partial x^2} + a(x,t) \dfrac{\partial u}{\partial x} + b(x,t) u = f(x,t), \quad (x,t) \in (0,1) \times (0,T),\\ u(x,0) = u_0(x),\quad x \in (0,1), \\ u(0,t) = g_0(t), \quad u(1,t) = g_1(t), \quad t \in (0,T), \end{gathered} \] where \(0 < \varepsilon \ll 1\).
It is well known that the solution of the above IBVP exhibits regular boundary layers, and one has to use layer-adapted meshes to solve these kinds of problems.
Here, the authors use the method of lines to semidiscretize the parabolic PDE in time by using the backward Euler scheme, and obtain a system of boundary value problems at each time level. The resultant BVPs are solved by applying the sinc-Galerkin method. The authors obtain some mathematical results showing the stability and convergence of the present method.
It is clear from the stability result that the present method is not \(\varepsilon\)-uniform stable, because the stability inequality contains the diffusion parameter \(\varepsilon\) in the denominator. In general, one is interested to study the above IBVP, for smaller values of \(\varepsilon\). In this case, the other terms in the stability inequality should be adjusted, which is not practical.
Therefore, the resulting error estimates are not \(\varepsilon\)-uniformly convergent. This can be easily seen from the error tables provided in the numerical examples. The earlier methods, which are used for comparison are all \(\varepsilon\)-uniform convergent (this can be easily seen, as \(\varepsilon \to 0\) the maximum pointwise error remains the same), whereas in the present method the maximum pointwise-error increases as \(\varepsilon\) becomes smaller.
It is evident that layer-adapted meshes are necessary to obtain \(\varepsilon\)-uniform convergence solutions for classical finite difference/element methods. This is applicable to the present method as well.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
35B25 Singular perturbations in context of PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Bialecki, B.: Sinc-collocation methods for two-point boundary value problems. IMA J. Numer. Anal. 11, 357-375 (1991) · Zbl 0735.65052 · doi:10.1093/imanum/11.3.357
[2] Cai, X., Liu, F.: A Reynolds uniform scheme for singularly perturbed parabolic differential equation. ANZIAM J. 47(EMAC-2005), C633-C648 (2007)
[3] Clavero, C., Jorge, J.C., Lisbona, F.: Uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems. J. Comput. Appl. Math. 154, 415-429 (2003) · Zbl 1023.65097 · doi:10.1016/S0377-0427(02)00861-0
[4] Clavero, C., Gracia, J.L., Stynes, M.: A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems. J. Comput. Appl. Math. 235, 5240-5248 (2011) · Zbl 1225.65084 · doi:10.1016/j.cam.2011.05.025
[5] Clavero, C., Gracia, J.L., Lisbona, F.: High order methods on Shishkin meshes for singular perturbation problems of convection-diffusion type. Numer. Algoritm. 22, 73-97 (1999) · Zbl 1083.65514 · doi:10.1023/A:1019150606200
[6] Clavero, C., Gracia, J.L.: A high order HODIE finite difference scheme for 1D parabolic singularly perturbed reactiondiffusion problems. Appl. Math. Comput. 218, 5067-5080 (2012) · Zbl 1245.65108 · doi:10.1016/j.amc.2011.10.072
[7] Deb, R., Natesan, S.: Higher-order time accurate numerical methods for singularly perturbed parabolic partial differential equations. Int. J. Comput. Math. 86(7), 1204-1214 (2009) · Zbl 1169.65083 · doi:10.1080/00207160701798764
[8] El-Gamel, M.: The sinc-galerkin method for solving singularly-perturbed reaction-diffusion problem. Electron. Trans. Numer. Anal. 23, 129-140 (2006) · Zbl 1112.65094
[9] Kadalbajoo, M.K., Gupta, V., Awasthi, A.: A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection-diffusion problem. J. Comput. Appl. Math. 220, 271-289 (2008) · Zbl 1149.65085 · doi:10.1016/j.cam.2007.08.016
[10] Kadalbajoo, M.K., Gupta, V.: Numerical solution of singularly perturbed convection-diffusion problem using parameter uniform B-spline collocation method. J. Math. Anal. Appl 355, 439-452 (2009) · Zbl 1171.65057 · doi:10.1016/j.jmaa.2009.01.038
[11] Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992) · Zbl 0753.65081 · doi:10.1137/1.9781611971637
[12] Mukherjee, K.; Natesan, S., No article title, Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems,Computing, 92, 1-32 (2011) · Zbl 1243.65106
[13] Mukherjee, K., Natesan, S.: Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems. Computing 84(3-4), 209-230 (2009) · Zbl 1185.65149 · doi:10.1007/s00607-009-0030-2
[14] Nurmuhammada, A., Muhammada, M., Moria, M., Sugiharab, M.: Double exponential transformation in the Sinc-collocation method for a boundary value problem with fourth-order ordinary differential equation. J. Comput. Appl. Math. 182, 32-50 (2005) · Zbl 1073.65064 · doi:10.1016/j.cam.2004.09.061
[15] Okayama, T., Matsuo, T., Masaaki Sugihara, M.: Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind. J. Comput. Appl. Math. 234, 1211-1227 (2010) · Zbl 1191.65185 · doi:10.1016/j.cam.2009.07.049
[16] O’Riordan, E., Pickett, M.L., Shishkin, G.I.: Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems. Math. Comput. 75(255), 1135-1154 (2006) · Zbl 1098.65091 · doi:10.1090/S0025-5718-06-01846-1
[17] Rashidinia, J., Zarebnia, M.: Convergence of approximate solution of system of Fredholm integral equations. J. Math. Anal. Appl. 333, 1216-1227 (2007) · Zbl 1120.65137 · doi:10.1016/j.jmaa.2006.12.016
[18] Ramos, J.I.: An exponentially fitted method for singularly perturbed one-dimentional parabolic problems. Appl. Math. Comput. 161, 513-523 (2005) · Zbl 1061.65089 · doi:10.1016/j.amc.2003.12.046
[19] Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (1996) · Zbl 0844.65075 · doi:10.1007/978-3-662-03206-0
[20] Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993) · Zbl 0803.65141 · doi:10.1007/978-1-4612-2706-9
[21] Saadatmandi, A., Dehghan, M.: The use of Sinc-collocation method for solving multi-point boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 17(2), 593-601 (2012) · Zbl 1244.65114 · doi:10.1016/j.cnsns.2011.06.018
[22] Zarebnia, M., Rashidinia, J.: Approximate solution of systems of Volterra integral equations with error analysis. Int. J. Comput. Math. 87(13), 3052-3062 (2010) · Zbl 1206.65265 · doi:10.1080/00207160902906463
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.